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CHAPTER 1:  Introduction 

 

Research problem 

It is our goal to further the understanding of methyl group and homocysteine metabolism 

as it relates to health and disease.  This necessitates investigation into the factors that alter 

methyl group metabolism and identification of potential adverse effects of these metabolic 

aberrations.  Previous research within our lab group and by others has demonstrated that 

both administration of retinoids or a diabetic condition acutely perturbs hepatic methyl group 

and homocysteine metabolism.  Specifically, both conditions upregulate glycine N-

methyltransferase (GNMT), an enzyme proposed to be a key regulator of methyl group 

supply and utilization.  It was our hypothesis that sustained induction of GNMT, by 

either retinoids or a diabetic condition, would lead to a functional methyl deficiency, 

whereby methyl groups would be unavailable for other methyltransferase reactions, 

such as DNA methylation.  The methylation of DNA is an important component of 

epigenetic regulation of the genome.  Epigenetic events, such as altered DNA methylation 

status, cause heritable changes in gene expression without changing the DNA sequence.  

Epigenetic marks are also associated with the maintenance of genome stability.  We 

expected that changes in epigenetic regulation, i.e. DNA methylation would be associated 

with adverse effects, such as hepatotoxicity.  Aberrant epigenetic regulation also represents 

a possible mechanistic link to the development of the secondary complications of diabetes, 

which will be addressed in future studies.  The aim of the studies presented here was to 

characterize methyl group and homocysteine metabolism by assessing key regulatory 

enzymes and metabolites, as well as epigenetic regulation by DNA methylation, in rats 

treated with all-trans-retinoic acid (RA) for up to six months, as well as in the streptozotocin 

(STZ)-induced (type 1) diabetic and Zucker (type 2) diabetic fatty (ZDF) rats.   

 

Significance 

 The results of these studies offer insight into the safety of RA treatments and the 

pathogenesis of type 1 and type 2 diabetes.  This knowledge could impact the course of 

treatment for many patients.  Retinoids are widely used for treatment of dermatological 



www.manaraa.com

2 

 

conditions and in cancer chemotherapy, but these treatments have many side effects and 

safety of the retinoid compounds is still a matter of debate.  Diabetes has been established 

as a serious public health concern with estimates that 12% of the U.S. population has the 

disease and the prevalence of diabetes is rising, both in the U.S. and worldwide.  Diabetes 

is associated with increased morbidity and mortality due to metabolic perturbations of the 

disease and the development of secondary complications including cardiovascular disease, 

nephropathy, neuropathy, and retinopathy.  By furthering the understanding of methyl group 

and homocysteine metabolism in these conditions, it is our hope that this information might 

be used for the formulation of appropriate dietary therapies to minimize adverse effects and 

development of secondary complications. 

 

Dissertation organization 

 Following a review of the literature, this dissertation will include three chapters 

consisting of manuscripts that have been prepared for publication in peer-reviewed journals.  

The first article will be submitted to Hepatology and presents an investigation of the effects 

of chronic retinoid treatment on hepatic methyl group metabolism, DNA methylation status, 

and general markers of toxicity in rats.  The second manuscript details a time course study 

of aberrant methyl group metabolism and DNA methylation in the STZ-induced rat model of 

type 1 diabetes.  This article was published in the Journal of Nutrition in November 2008.  

The third, and final, paper describes the characterization of methyl group and homocysteine 

metabolism, as well as epigenetic regulation in the liver, kidney, and heart of the ZDF rat 

during early and advanced diabetic conditions.  This article has been prepared for 

publication in the American Journal of Physiology – Endocrinology and Metabolism.  

Following this third manuscript will be an overall summary and conclusions statement which 

presents a thorough discussion of the results, proposes potential regulatory factors, and 

suggests potential future research directions. 

 

  



www.manaraa.com

3 

 

CHAPTER 2:  Literature review 

 

Methyl group and homocysteine metabolism 

 The metabolism of homocysteine and regulation of methyl balance are fundamental 

processes in the maintenance of health.  Dietary methyl donors include methionine, folate, 

betaine, and choline.  Utilization of methyl groups from these sources and the metabolism of 

homocysteine rely on transmethylation, remethylation, and transsulfuration pathways 

(Figure 1 ).  Transmethylation begins with the activation of methionine to S-

adenosylmethionine (SAM) via addition of an adenosyl group by methionine 

adenosyltransferase (MAT).   SAM can then donate a methyl group to a variety of methyl 

acceptor molecules, resulting in a methylated product and S-adenosylhomocysteine (SAH).  

Homocysteine is produced by the hydrolysis of SAH by S-adenosylhomocysteine hydrolase 

(SAHH).  Homocysteine can be recycled to methionine by folate/B12-dependent or –

independent pathways.  The folate/B12-dependent pathway utilizes a methyl group provided 

by 5-methyltetrahydrofolate (5-CH3-THF) via the methylcobalamin cofactor of methionine 

synthase (MS).  Methylenetetrahydrofolate reductase (MTHFR) synthesizes the 5-CH3-THF 

substrate from 5,10-methylenetetrahydrofolate (5,10-CH2-THF), which is a branch point in 

folate metabolism and is also used for thymidylate synthesis. Remethylation by folate/B12-

independent means is catalyzed by betaine-homocysteine S-methyltransferase (BHMT) and 

utilizes betaine as a methyl donor.  In addition to dietary sources, betaine can be derived 

from choline by the action of choline oxidase; thereby choline is also indirectly a methyl 

donor for the BHMT reaction.  As an alternative to remethylation, homocysteine may also be 

catabolized to cysteine by the transsulfuration pathway enzymes cystathionine β-synthase 

(CBS) and cystathionine γ-lyase (CGL), both of which are B6-dependent enzymes.  

Understanding the regulation and physiological significance of each pathway, as well as the 

interrelationships between pathways, is an important and active area of research. 
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Transmethylation  

The condensation of methionine with adenosine is catalyzed by any of the three 

isoforms of MAT.  The isoforms of MAT are functionally different based on their kinetic 

properties and tissue-specificity (1

(Km), whereas MAT III has a high K

under normal intracellular methionine concentrations.  

MAT III isoform is not subject to product inhibition by SAM

The condensation of methionine with adenosine is catalyzed by any of the three 

isoforms of MAT.  The isoforms of MAT are functionally different based on their kinetic 

specificity (1-3).  MAT I and MAT II have a low Michaelis constant 

), whereas MAT III has a high Km.  MAT I and MAT II function at near maximal capacity 

intracellular methionine concentrations.  In addition, unlike MAT I and II, the 

MAT III isoform is not subject to product inhibition by SAM and thus, is uniquely able to 

4 

 

 

The condensation of methionine with adenosine is catalyzed by any of the three 

isoforms of MAT.  The isoforms of MAT are functionally different based on their kinetic 

3).  MAT I and MAT II have a low Michaelis constant 

.  MAT I and MAT II function at near maximal capacity 
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continue to use more substrate as methionine load increases.  MAT II is specific to 

extrahepatic tissues, whereas MAT I and III are expressed in the liver.  The presence of 

MAT III in the liver is just one of many pieces of evidence that suggests a key role for the 

liver in regulating methyl supply and utilization. 

 Following the activation of methionine to SAM by MAT, SAM can be used in a variety 

of transmethylation reactions.  There are purported to be >100 SAM-dependent 

methyltransferases, over 30 of which have been characterized (4).  Transmethylation 

reactions take place in all cells and involve the transfer of a methyl group from SAM to a 

methyl acceptor, resulting in the generation of the methylated product and SAH.  Methyl 

acceptors include lipids, proteins, nucleic acids, and other small molecules.  Lipids produced 

by transmethylation reactions include phosphatidylcholine, which is a vital component of 

membranes, bile acids, and lipoproteins, and involved in cell signaling (5).  Methylated 

proteins include cellular receptors, histones, and transcription factors (6).  SAM-dependent 

transmethylation reactions are also responsible for the methylation of non-coding and 

coding RNAs, as well as the establishment and maintenance of DNA methylation patterns 

(7,8).  Other small molecules that are methylated include the neurotransmitters of the 

serotonin and catecholamine pathways (9) and ubiquinone in the mitochondria (10).  This 

list highlights just a few of the biologically important molecules derived from or modified by 

SAM-dependent transmethylation reactions. 

In addition to these varied methylated products, all transmethylation reactions 

produce SAH.  This product can be hydrolyzed to homocysteine and adenosine by SAHH.  

This reaction is bidirectional and favors the formation of SAH, but proceed towards 

homocysteine with the removal of the products (11).  Elevated levels of both SAH and 

homocysteine have been associated with the development of disease, including 

neurological disorders, vascular diseases, and renal dysfunction (12-16).  Therefore, 

regulation of the production of these metabolites is critical.   

There are three methyltransferases that have been proposed to be major 

contributors to the regulation of methyl group and homocysteine metabolism: 

guanidinoacetate methyltransferase (GAMT), phosphatidylethanolamine N-

methyltransferase (PEMT), and glycine N-methyltransferase (GNMT).  It has long been 

known that GAMT and PEMT catalyze the most quantitatively significant SAM-dependent 
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transmethylation reactions under normal physiological conditions (17).  GAMT facilitates the 

transfer of one methyl group from SAM to guanidinoacetate to form creatine, a ready source 

of energy for cells.  Traditionally, GAMT was thought to be the largest single consumer of 

methyl groups from SAM (17), but Stead et al. (18) have recently summarized evidence 

which suggests that PEMT may be a larger consumer of methyl groups and more important 

contributor to elevations of homocysteine than GAMT.  In addition to methodological 

questions regarding earlier studies, it is noted that creatine can also be supplied in the diet.  

Their study of creatine supplementation in rats demonstrated decreased guanidinoacetate 

synthesis, a 90% decrease in GAMT activity, and 25% decrease in plasma homocysteine 

levels (19).  Subsequent studies in rats have also shown decreases in plasma homocysteine 

(20; Nonnecke & Schalinske, unpublished observations). However, studies in humans have 

provided conflicting results.  Unexpectedly, two recent studies have shown creatine 

supplementation to be associated with increases in plasma homocysteine levels in two very 

different subject populations: healthy young men (21) and patients with coronary artery 

disease (22).  Of the remainder of human studies of creatine supplementation, one found a 

small, but significant decrease in plasma homocysteine (23), whereas others found no effect 

(24) or were inconclusive due to confounding factors such as renal disease and use of 

dietary supplements (25). 

The reaction catalyzed by PEMT – the other proposed regulator of homocysteine 

levels -  consists of the sequential addition of three methyl groups to 

phosphatidylethanolamine (PE), thereby consuming three molecules of SAM and generating 

three molecules of SAH, as well as the product phosphatidylcholine (PC).  Under normal 

physiological conditions, PEMT is estimated to generate one-third of PC produced and the 

remainder is produced via the CDP-choline pathway (26).  Cytidylyltransferase-α (CTα) and 

PEMT knockout models have been used to determine the physiological significance of 

altered PEMT activity (27-30).  The rate-limiting step of the CDP-choline pathway of PC 

synthesis is catalyzed by CTα.  Therefore, knocking out CTα would be expected to increase 

PEMT activity for adequate PC synthesis.  Accordingly, in CTα-deficient mice, PEMT activity 

increased 100% and methylation of PE, as measured using radiolabeled methionine, also 

increased 100% (27).  Furthermore, plasma homocysteine levels were elevated 20-40% in 

CTα-deficient mice compared to controls, despite compensatory increases in BHMT activity.  

Likewise, transfection of PEMT into rat hepatoma cells resulted in ~1.5-fold increase in 

homocysteine secretion (28).  Conversely, primary hepatocytes from PEMT -/- mice secreted  



www.manaraa.com

7 

 

~50% less homocysteine than cells from wild-type mice and plasma homocysteine levels 

were ~50% lower in both male and female mice deficient in PEMT.  Deficiency of PEMT also 

decreased hepatic levels of choline, choline-containing phospholipids, triglycerides, and 

lipoproteins, as well as altered lipoprotein production and metabolism (29,30).   

Whereas GAMT and PEMT have been most closely linked to homocysteine levels, 

GNMT is a proposed regulator of methyl group supply and utilization (31).  GNMT is 

expressed in kidney, pancreas, and small intestine and is highly abundant in the liver, 

comprising up 1-3% of total hepatic protein (32).  The GNMT tetramer catalyzes the addition 

of a methyl group to glycine, thereby forming sarcosine.  Sarcosine has no clear 

physiological function and can be metabolized by sarcosine dehydrogenase, making it an 

ideal product for disposal of excess methyl groups.  GNMT is also notable in that it is not 

subject to feedback inhibition by SAH unlike most, if not all, other known SAM-dependent 

methyltransferases (31).  Based on these characteristics, accumulating evidence from 

GNMT knockout models, and a unique regulatory relationship with folate metabolism, GNMT 

is proposed to be a primary regulator of the SAM:SAH ratio which governs transmethylation 

potential.   

Two GNMT knockout mouse models have recently been developed, and although 

there is some debate regarding completeness of the knockout and differences in the course 

of pathogenesis in the two models (33), animals from both models exhibit dramatic 

increases in the SAM:SAH ratio and development of hepatocellular carcinoma (HCC; 34-

37).  The Wagner group produced the first published report of a GNMT knockout mouse 

which was characterized by elevated hepatic methionine and SAM concentrations 

concurrent with decreased SAH concentrations, resulting in a 100-fold increase in the 

hepatic SAM:SAH ratio (34).  In the GNMT knockout model developed by Chen’s group, the 

SAM:SAH ratio was elevated 42- and 82-fold in male and female GNMT -/- mice, respectively 

(35).  There was no elevation of the SAM:SAH ratio in heterozygotes in either model, 

despite a 50% reduction in GNMT activity in heterozygotes as reported by Luka et al (34).  

The development of HCC in GNMT knockout mice is postulated to be due to dysregulation 

of DNMTs, DNA and histone methylation, as well as perturbation of canonical signaling 

pathways involved in carcinogenesis including the Wnt, JAK/STAT, and MAPK pathways 

(36,37).  Human HCC and prostate cancer have also been characterized by downregulation 

or lack of GNMT (38-40). 
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Upregulation of GNMT has been postulated to be protective against toxins and 

carcinogenesis.  In addition to its regulatory role in methyl group metabolism, GNMT is also 

a purported 4S polycyclic hydrocarbon-binding protein (41).  Benzo[α]pyrene and aflatoxin 

or their metabolites are aryl hydrocarbons and causal agents of HCC.  Upregulation of 

GNMT in transfected cell lines or a transgenic mouse model decreased toxin-associated 

DNA adduct formation and reduced cytotoxicity or prevented the development of HCC 

(42,43).  In response to the toxins, GNMT was translocated to the nucleus and molecular 

modeling suggested interactions at the SAM-binding site of the dimeric form of GNMT.  

Earlier reports have also shown translocation of GNMT to the nucleus and measured 

significant GNMT activity in nucleic extracts (32), though the role of GNMT in the nucleus 

remains somewhat ambiguous.   

Whereas GAMT does not appear to catalyze the rate-liming reaction of creatine 

synthesis and is proposed to respond largely to guanidinoacetate concentrations (44,45), 

PEMT and GNMT are subject to regulation by a wide variety of hormonal factors.  

Expression and/or activity of PEMT and GNMT are gender-specific or responsive to sex 

hormones (46,47).  GNMT and PEMT are induced by a diabetic condition or treatment with 

glucocorticoids (32,48-52), whereas insulin treatment attenuates this effect (48,50).  As 

another potential function for GNMT, this diabetes-induced upregulation has been proposed 

as a mechanism for the generation of pyruvate from methionine for gluconeogenesis, 

especially as GNMT expression is limited to gluconeogenic tissues (32). However, 

upregulation of GNMT is not specific to a diabetic state.  GNMT activity and expression are 

also altered by growth hormone: activity and mRNA abundance are increased in the Ames 

dwarf mouse which lacks growth hormone, prolactin, and thyroid-stimulating hormone; this 

increase was attenuated by treatment with growth hormone (53,54).  Likewise, 

triiodothyronine normalized elevations in GNMT activity by retinoids, although GNMT 

abundance was unaffected, suggesting posttranslational regulation; neither hypo- nor 

hyperthyroidism had an independent effect on GNMT activity or protein abundance (55). 

There is also a unique regulatory relationship between GNMT and folate metabolism.  

GNMT can be bound by 5-CH3-THF, which inhibits GNMT activity (56), specifically by 

inhibition of phosphorylation which enhances GNMT activity (57).  However, with GNMT 

activity decreased, this would be expected to increase intracellular SAM levels and MTHFR 

is allosterically inhibited by SAM (58).  When methyl group supply is high, SAM levels are 
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elevated and MTHFR is inhibited, thereby decreasing the available methyl groups incoming 

via folate/B12-dependent remethylation.  Furthermore, GNMT activity is freed from inhibition 

by 5-CH3-THF, resulting in lowering of SAM levels and restoration of the SAM:SAH ratio.  

When methyl group supply is low, SAM levels are decreased, relieving the inhibition of 

MTHFR and increasing 5-CH3-THF concentrations, which inhibits GNMT activity and 

provides more substrate for remethylation via MS, thereby increasing the methyl pool.  This 

reciprocal regulation of GNMT and MTHFR is thought to play a key role in transmethylation 

potential homeostasis.   

 

Remethylation 

 Homocysteine can be remethylated by folate/B12-dependent or –independent 

pathways.   In addition to the remethylation of homocysteine to methionine, folate 

metabolism is also involved in the transfer of one-carbon units for the synthesis of purines 

and thymidylate (59).  The C2 and C8 carbons of purines are donated from the formyl group 

of 10-formyltetrahydrofolate in reactions catalyzed by 5-amino-4-imidazole carboxamide 

transformylase and glycinamide ribotide transformylase, respectively.  For thymidylate 

synthesis, formaldehyde is transferred from 5,10-CH2-THF to deoxyuridylate by thymidylate 

synthetase.  Alternatively, MTHFR converts 5,10-CH2-THF to 5-CH3-THF, which is the 

methyl donor for the remethylation of homocysteine to methionine by the folate/B12-

dependent pathway.  The folate/B12-dependent pathway of remethylation appears to be 

active in all tissues and is essential for survival (60,61).  In the attempt at developing a MS 

knockout in two strains of mice, Swanson et al. (61) reported that MS activity was decreased 

40% in heterozygotes relative to controls, but there were minimal effects on plasma 

methionine or homocysteine levels.  There were no viable homozygotes, with loss of the 

embryo occurring shortly after implantation.  It is likely that the failure to survive was due, at 

least in part, to the effects of the “methyl trap” hypothesis, in which folate accumulates as 5-

CH3-THF due to the irreversibility of the MTHFR reaction and lack of other 5-CH3-THF-

metabolizing enzymes and thus, is unavailable for the other critical reactions requiring folate 

coenzymes (59).  This “methyl trapping” phenomenon was first proposed after aberrations of 

folate metabolism were noted in patients and rats lacking adequate vitamin B12, an essential 

cofactor for MS activity.  Unlike the MS knockout model, both hetero- and homozygous 
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MTHFR knockout mice were viable and exhibited elevated plasma homocysteine levels and 

decreased SAM:SAH ratios in liver, brain, ovaries, and testes (62).  The phenotypic effects 

were significantly greater in MTHFR-/- mice, which were developmentally delayed and had 

neural and vascular abnormalities in addition to the 10-fold increase in plasma 

homocysteine.  Taking into consideration the effects on metabolites observed in the MS and 

MTHFR knockout models and the unique relationship between the MTHFR and GNMT, it 

appears that MTHFR has a more significant regulatory role than MS. 

Homocysteine may also be remethylated to homocysteine by the action of BHMT in 

the folate/B12-independent remethylation pathway.  Choline can be converted to betaine by 

choline oxidase and betaine aldehyde dehydrogenase in the mitochondria. Thereby, both 

dietary choline and betaine may serve as methyl donors for this reaction.  BHMT is 

suggested to contribute significantly to the regulation of homocysteine levels.  BHMT is 

primarily a liver-specific enzyme, but can also be found in the kidney in primates and pigs, 

with small amounts expressed in the rat kidney (61).  Although there are no genetic 

knockout models for BHMT, S-(δ-carboxybutyl)-DL-homocysteine is a potent inhibitor of 

BHMT activity and has been used experimentally to determine the effect of BHMT on 

homocysteine levels (64).  A single injection of S-(δ-carboxybutyl)-DL-homocysteine (1 mg) 

in mice was sufficient to decrease BHMT activity 90% and increase homocysteine levels by 

greater than 100% for 1-8 hrs.  There was no effect on MS and CBS activities, suggesting 

that changes in homocysteine could be attributed specifically to the decrease in BHMT 

activity. 

MS and BHMT are regulated by many of the same factors that influence the SAM-

dependent methyltransferases.   The effects of a diabetic condition on MS, MTHFR, and 

BHMT are varied and will be discussed in depth in subsequent sections.  In the growth 

hormone-deficient Ames dwarf mouse, the mRNA expression of BHMT was upregulated, 

whereas MS expression was suppressed (54).  MTHFR activity in the liver and/or kidney is 

affected by sex steroids, thyroid, and growth hormone (60).  BHMT activity has also been 

shown to be suppressed by triiodothyronine (55) and is likely affected by testosterone and 

estrogens, but much remains to be learned about the hormonal regulation of BHMT (65). 
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Transsulfuration 

 Transsulfuration is the irreversible catabolic pathway for homocysteine to cysteine 

and is specific to the liver, kidney, pancreas, intestine, and brain (1).  As the only reaction 

resulting in the catabolism of homocysteine, CBS has also been implicated in the regulation 

of plasma homocysteine concentrations.  The effect of CBS upregulation on serum 

homocysteine levels was investigated by Wang et al. (66) using a transgenic mouse model.  

By giving mice supplemental zinc, transcription of the CBS transgene under the regulation of 

the metallothionein promoter was stimulated, which resulted in increased CBS activity and 

expression in the liver and kidney with concurrently decreased serum homocysteine 

concentrations.  The homocysteine-lowering effect of CBS upregulation was also observed 

when mice were fed a high methionine-low folate diet, which successfully induced 

hyperhomocysteinemia in wild-type mice.  Conversely, mice that are completely deficient in 

CBS had plasma homocysteine concentrations 40-fold greater than their wild-type 

counterparts, whereas CBS activity decreased 50% and plasma homocysteine 

concentrations increased 2-fold in the heterozygotes (67).   

CBS and CGL are also subject to regulation, by diabetes as well as other hormones 

and cellular conditions.  CBS and CGL activities were elevated in the Ames dwarf mouse 

liver (53).  The effect of increased activities of these enzymes in the Ames dwarf mouse 

were studied further, which revealed increased flux through the transsulfuration pathway in 

the liver, kidney and brain, as well as lower plasma homocysteine concentrations (54).  CBS 

activity and transsulfuration flux are also enhanced in response to increased SAM 

concentrations (68) and under oxidative conditions (12).  This is likely due to the need for 

disposal of excess methionine and/or generation of cysteine, which can be used for the 

production of a variety of important intracellular metabolites, including the antioxidants 

glutathione and taurine.  Glutathione and taurine are involved in redox homeostasis and are 

considered a key defense against intracellular oxidation.  Cysteine is also a precursor to 

hydrogen sulfide, which is a transmitter with neurological, intestinal, and cardiovascular 

effects (69). 
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Methyl balance, homocysteine, and the SAM:SAH ratio 

Dietary methyl donors include methionine, folate, betaine, and choline.  Methionine is 

an essential, sulfur-containing amino acid found in dietary proteins.  Folate and betaine are 

utilized by the remethylation pathways for donation of methyl groups to homocysteine for 

regeneration of methionine.  Choline does not serve as a methyl donor directly, but it can be 

converted to betaine by the enzyme choline oxidase, also commonly referred to as choline 

dehydrogenase.  Varying dietary composition with respect to dietary methyl donors can 

perturb folate one-carbon, methyl group, and homocysteine metabolism. 

Methionine is metabolized to SAM, the primary methyl donor for transmethylation 

reactions and a positive regulator of transmethylation and transsulfuration reactions (1).  

Feeding rats high-methionine diets increased activities of MAT, GNMT, and SAHH (70,71).  

Transsulfuration enzymes were also upregulated, whereas MS was decreased (72).  BHMT 

was upregulated in response to low methionine diets and this effect was enhanced by 

betaine or choline supplementation (72,73).   

Diets deficient in one methyl donor illustrate the balance required between the 

pathways.  Low folate may disrupt the balance that normally results from the reciprocal 

regulation of GNMT and MTHFR.  In rats fed a folate-deficient diet, GNMT activity increased 

and the intracellular SAM:SAH ratio decreased in the liver and pancreas within just 2 weeks 

(74,75).  Folate or choline deficient diets are associated with hyperhomocysteinemia  and 

decreased concentrations of the provided methyl donor (i.e. choline deficiency results in 

lower hepatic folate concentrations), likely due to compensatory upregulation of the 

remethylation of homocysteine by the pathway utilizing the available methyl donor (76).  In 

humans, an acute dose of betaine (3 or 6 g) was sufficient to decrease plasma 

homocysteine concentration up to 10% in healthy middle-aged adults (77). 

Normal plasma homocysteine levels in humans range from 5-15 µmol/L (78).   Mild 

to moderate hyperhomocysteinemia is classified as plasma homocysteine levels between 15 

and 30 µmol/L, intermediate and severe hyperhomocysteinemia refers to plasma 

concentrations above 30 µmol/L and 100 µmol/L respectively.  Disruption of homocysteine 

metabolism, specifically hyperhomocysteinemia, has been associated with increased risk of 

cancer, cerebro- and cardiovascular disease, neurological disease, osteoporosis, pregnancy 

complications, and birth defects (78-82).  In the Hordaland Homocysteine Study of over 
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18,000 patients in Western Norway, lifestyle and dietary factors such as smoking, increased 

coffee consumption, and low folate intake were associated with hyperhomocysteinemia, 

whereas there was an inverse relationship between physical activity and plasma 

homocysteine concentrations (82).  Age, gender, renal function, and the MTHFR 677C>T 

polymorphism were also found to be key determinants of homocysteine levels.  Plasma 

homocysteine concentrations were increased in men and patients that were older, had 

elevated creatinine levels (an indicator of renal dysfunction), and/or the T/T genotype for 

MTHFR 677.  The MTHFR677C>T point mutation is particularly common, with prevalence of 

up to 20% in some populations, but polymorphic forms of GNMT, MS, SHMT, and CBS have 

also been identified (83,84).  This raises the possibility for nutrient-gene or gene-gene 

interaction effects and indeed, the response of homocysteine and folate one-carbon 

metabolism to folate has been shown to be affected by polymorphisms (83-85) and 

relationships with other methyl donors are likely to exist.  Inborn defects of methyl group and 

homocysteine metabolism have also been documented for all enzymes with the exception of 

BHMT and are associated with the accumulation of intermediate metabolites of their 

respective pathways (86).    

Dietary supplementation of B vitamins with the goal of lowering plasma 

homocysteine levels has been studied extensively and has been shown to be effective, but 

whether the lowering of homocysteine levels had protective effect against morbidity and 

mortality is still controversial (Williams and Schalinske, BioFactors, in press).  Early studies 

showed improved B-vitamin status lowered plasma homocysteine levels, and decreased 

incidence of adverse events or improvements in indicators of vascular endothelial 

dysfunction in patients treated with folic acid, B12, and/or B6 vs. those treated with a placebo 

(87-91).  However, these results have largely been refuted by the predominantly negative 

results of subsequent trials, including the NORVIT, WENBIT, HOPE-2, VISP, VITATOPS, 

and VITRO studies (92-102).   These studies generally had a mean follow-up time of several 

years and assessed a wide variety of vascular indicators and endpoints including carotid 

intima-media thickness and flow-mediated dilation (96), markers of arterial inflammation (93-

102), need for revascularization procedures (98), occurrence of thromboembolism (97,99), 

occurrence of stroke and myocardial infarction (92,94,98,100,101,103), as well as overall or 

coronary/vascular-related mortality (92,94,95,98,100,103).     
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It is not clear as to what factors may account for the disparity in these findings.  The 

duration of treatment, B-vitamin status, and polymorphisms of enzymes involved in 

homocysteine metabolism could potentially play a role.  Notably, the treatment period was 

generally longer in duration for the later studies in comparison to those conducted earlier, 

i.e. several years vs. weeks or months.  The apparent affect of the duration of treatment is 

supported by the meta-analysis by Potter et al (96) in which they found that in patients post-

stroke, B-vitamin treatment had positive effects in the short term, but these effects were not 

sustained long term.  Research in this area is ongoing and several recent short term studies 

have demonstrated benefits of folate supplementation alone on vascular outcomes in high-

risk patients (105-107).   Interestingly, the data suggests that improvements are independent 

of the homocysteine-lowering effect of treatment, therefore other mechanisms of action 

should also be considered for short-term treatment effects.. More data is also expected from 

additional long-term studies of high-risk populations which have been initiated, but are not 

yet complete (108,109).  Although poor B-vitamin status and polymorphisms of MTHFR 

have been associated with elevations in plasma homocysteine levels and may impact the 

homocysteine-lowering response to treatment, there is little or no evidence to support that 

these factors may account for differential results between studies. 

Vascular diseases are not the only conditions in which there have been trials of B-

vitamin interventions.  There appears to be no effect of homocysteine-lowering B-vitamin 

therapy on Alzheimer’s disease and cognitive decline (110-112), and the results are 

conflicting regarding potential effects on bone mineral density and turnover, and fracture 

occurrence (113-115).  However, not all findings have been negative; the Women’s 

Antioxidant and Folic Acid Cardiovascular Study found that long-term daily treatment with 

folic acid, pyridoxine, and cobalamin in a high-risk population reduced the risk of age-related 

macular degeneration (116).  Furthermore, studies in healthy individuals suggest that 

treatment with B vitamins may be an effective means of reducing the risk of stroke (117) and 

slowing the progression of early-stage atherosclerosis (118).  Though the data is limited, the 

most important research area for the future use of treatments with the homocysteine-

lowering vitamins will be identifying specific populations that are most expected to benefit 

from therapy, with particular emphasis on primary prevention. 

Although homocysteine concentrations have been closely linked to the development 

of disease, some studies have suggested that SAH may be an even better biomarker (13-
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16).  Maintenance of the SAM:SAH ratio is critical because this ratio serves as an indicator 

of transmethylation potential.  Thus, important transmethylation reactions, such as the 

methylation of DNA and PE, are compromised when the SAM:SAH ratio is lowered (119-

122).  Hypomethylation of DNA was associated elevated SAH levels in particular.  

Conversely, elevated SAM levels in the brain of the PEMT knockout mouse were associated 

with hypermethylation of DNA and proteins (123).  As another contradiction between the two 

GNMT knockout models, the Chen group reported global DNA hypomethylation using the 

Methylamp Global DNA Methylation Kit from Epigentek (37), whereas the group of Wagner, 

Luka, and Mato found genomic DNA hypermethylation – as would be expected due to the 

greatly increased availability of SAM – as measured by high performance capillary 

electrophoresis (36).  In addition to the potential role of GNMT at the tissue level, interorgan 

metabolism of SAH may also help regulate whole body levels of SAH, thereby affecting the 

SAM:SAH balance.  Based on the arterio-venous differences across tissues, it has recently 

been shown that SAH is exported from the liver, whereas 40% of circulating SAH was 

removed by the kidney (124).  With physiological levels of plasma homocysteine and normal 

renal function, the kidney also removes a substantial amount of circulating homocysteine 

(20-50%) from the plasma, where the majority is metabolized rather than being excreted 

(125-127).  Furthermore, homocysteine uptake and metabolism in the healthy rat kidney 

increases in response to experimentally-induced hyperhomocysteinemia.   Clinically, there is 

a strong association between elevated homocysteine levels and increasing severity of renal 

disease (128) and transmethylation flux has been shown to be suppressed in diabetic 

patients with nephropathy (129).  Taken together, this suggests that adequate kidney 

function appears to be a critical component for homeostasis of the SAM:SAH ratio and 

homocysteine concentrations.  This also highlights the complexity of methyl group and 

homocysteine metabolism, and although each of the constituent pathways has been well-

studied, additional efforts need to be made towards the development of a more unified 

theory of regulation of methyl group and homocysteine metabolism.  This might be 

accomplished through a combination of techniques including mathematical modeling (130) 

and in vivo tracer kinetic studies (131). 
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Epigenetic regulation of gene expression  

 The term “epigenetics” was first introduced by Waddington in the early 1940’s (132). 

Waddington used the term to describe the interactions between the environment and genes 

that governed the development of cells.  Epigenetics remains an active field of investigation 

in developmental biology, but the concept has further evolved and the modern definition of 

epigenetics refers to heritable - mitotic and/or meiotic - changes in gene function that cannot 

be attributed to alterations of the sequence of bases (133).  Epigenetic mechanisms include 

DNA methylation, histone modifications, and chromatin remodeling.  These processes can 

be thought of as a level of regulation superimposed on the genome.  Although epigenetic 

marks are heritable, they have also been shown to be vulnerable to change by 

environmental influences.  Changes in epigenetic regulation are hallmarks of development, 

aging, and the pathology of many diseases.   

 DNA methylation is likely the most thoroughly studied epigenetic mechanism.  

Methylation of DNA serves many functions including contributions to genome stability, 

repression of parasitic elements, imprinting, X chromosome inactivation, and regulation of 

gene expression (8).   DNA is methylated at the 5'-position of cytosine bases within the 

context of CpG dinucleotides, which consist of a cytosine base linked to a guanine base by 

a phosphodiester bond.  Eighty percent of CpG dinucleotides are generally highly 

methylated and located in repetitive sequences and satellite DNA, whereas the other CpGs 

are found in dense clusters called CpG islands (8,134).  Methylated regions are typically 

associated with tightly condensed heterochromatin.  Alternatively, unmethylated CpGs are 

generally found in the more loosely packed euchromatin.  CpG islands are associated with 

over 50% of known genes and are defined by an overall GC content of >60% over the range 

of at least 200 bases, and are found upstream of genes in the promoter, untranslated 

region, or exon 1 (135).  Although under normal conditions most CpG islands are 

unmethylated, patterns of CpG methylation appear to be developmental stage- and tissue-

specific (134).  Aberrant global and CpG island DNA methylation has also been noted in the 

pathogenesis of diseases such cancer and cardiovascular disease (8,136).    

DNA methyltransferases are a family of enzymes involved in the establishment and 

maintenance of DNA methylation patterns via SAM-dependent transmethylation.  The de 

novo DNA methyltransferases that establish DNA methylation patterns are DNMT3a and 3b, 
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whereas DNMT 1 serves as the maintenance methyltransferase (137).  Reflecting their 

function, DNMT3a and 3b are most abundantly expressed in embryonic stem cells, but 

expression decreases with differentiation (138).  There is also a third member of the DNMT3 

family, DNMT3L, which is a regulatory factor that interacts with DNMT3a and 3b to enhance 

de novo methylation (103).  DNMT1 functions to maintain DNA methylation patterns during 

cellular replication.  As such, DNMT1 contains a replication foci targeting sequence, 

interacts with the transcriptional machinery, and the methyl-DNA-binding site favors 

hemimethylated DNA (137,140). 

 Most DNA does not exist freely in the nucleus.  Rather, it is wrapped around an 

octomer of histones, forming nucleosomes, and then is further condensed into the higher 

order structure of chromatin.  There are extensive and complex interactions between DNA 

methylation, histone modifications, and chromatin remodeling that affects the structure of 

DNA, which in turn is related to genomic stability and regulation of gene expression (141-

143).  The proteins that help bridge the gap between DNA methylation and the formation of 

heterochromatin are the family of methyl-CpG-binding domain (MBD) proteins (141).  The 

MBD family consists of MBD1-4 and methyl-CpG-binding protein 2 (MeCP2).  In addition to 

the common MBD, all MBD proteins have been shown to be capable of mediating 

transcriptional repression, primarily through the recruitment of other regulatory proteins that 

reinforce the DNA methylation signal with histone modifications and chromatin remodeling.  

MBD1 interacts with the SET and Suv histone methyltransferases.  MBD2 and MBD3 are 

part of the mi-2/NuRD chromatin remodeling complex.  Within this complex, MBD2 appears 

to help target the methylated sequences on DNA, whereas MBD3 contains a loss-of-function 

mutation in the MBD and facilitates protein-protein interactions.  MBD4 is unusual because 

its most well-studied function is as a DNA repair enzyme, with particular affinity for TpG-CpG 

mismatches.  Lastly, MeCP2 links DNA methylation to repressive chromatin conformation by 

recruitment of histone deacetylases and histone methyltransferases.  MeCP2 may also be 

involved in the regulation of splicing.   

There are numerous post-translational modifications of histones, including 

acetylation, methylation, phosphorylation, ubiquitination, and biotinylation (144,145).  

Histone acetylation is particularly dynamic, is controlled by histone acetyltransferases and 

deacetylases, and is generally associated with active regions of the genome (144).  Histone 

mono-, di-, or tri-methylation is more stable and these marks have been associated with 



www.manaraa.com

18 

 

either transcriptional activation or repression.  Histone modification by phosphorylation, 

ubiquitination or biotinylation has not been studied as extensively as the acetylation and 

methylation marks.  Phosphorylation appears to play a role in transcriptional activation and 

chromosome condensation/segregation during mitosis.  Ubiquitination and biotinylation are 

involved in X chromosome inactivation and repression of transposable elements 

respectively (145).  There is a great deal of interplay between the histone modifications, the 

observation of which led to the development of the “histone code” hypothesis (146) which 

postulates that combinations of histone modifications could be used to predict the regulatory 

effect on the gene.  However, the concept of epigenetics is continuously evolving and 

gaining in complexity.  More recently discovered epigenetic mechanisms such as the 

involvement of noncoding RNAs are active areas of research (147). 

Evidence from studies of monozygotic twins shows that during early childhood, twins 

have similar patterns of DNA methylation and histone acetylation, but these similarities are 

lost in older twins (148).  These differences that accumulate over a lifetime might be 

attributed to environmental factors, including diet, which have been shown to impact 

epigenetic mechanisms.  The effects of methyl-deficient diets have been particularly well-

studied in the context of HCC (149).  Feeding of methyl-deficient diets to rats resulted in 

perturbations of folate metabolism, thereby compromising thymidylate and purine synthesis 

and increasing uracil misincorporation, abasic sites and DNA strand breaks.  These 

phenomena are thought to precede increased DNMT activity, altered expression patterns of 

DNMTs and MBDs, and abnormal histone modification patterns (150-154).  The effects of 

methyl deficiency on DNA methylation were specific to the liver (153) and were reversible for 

at least 9 weeks, but not 18 weeks after initiation of the diet by treating with a methyl-replete 

diet (154), suggesting a possible window for dietary interventions.   In a similar fashion, 

folate deficiency decreases the SAM:SAH ratio and is associated with global and gene-

specific DNA hypomethylation in both rodent models and human subjects (74,75,155,156). 

This effect is reversible with folate supplementation, at least in the short term (155).  Folate 

treatment has also been shown to restore DNA methylation levels to normal in lymphocytes 

of hemodialysis patients with hyperhomocysteinemia and in livers of aging rats (156,157).  

Genes of methyl group and homocysteine metabolism have also been implicated in nutrient-

gene interactions affecting epigenetic mechanisms (83).  In addition to methyl donors, 

bioactive food components, zinc, selenium, and retinoic acid are all potential modulators of 
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epigenetic regulation via effects on methyl group and homocysteine metabolism or 

epigenetic regulatory proteins (158). 

For the studies presented herein, genomic and CpG island DNA methylation, as well 

as expression of DNMTs and MBDs were used as indicators of epigenetic regulatory 

processes.  DNA methylation status was measured by digestion of DNA with methylation-

specific restriction enzymes followed by cytosine extension assay and expression of 

epigenetic regulatory proteins was determined primarily by real time reverse-transcriptase 

PCR for relative quantification of mRNA abundance.  These methods are well-accepted and 

have been used previously for the assessment of epigenetic dysregulation (151,153,154), 

though our laboratory has made minor modifications (detailed in Materials and Methods 

section within each appropriate chapter).  These analyses will detect overall changes in the 

degree of genomic and CpG island DNA methylation, as well as relative expression of the 

DNMTs and MBDs.  DNA methylation patterns may also be assessed at specific genes and 

we expect that this will be the goal of future studies. 

  

Altered methyl group and homocysteine metabolism in cluding epigenetic regulation  

There are numerous factors that can disrupt normal methyl group and homocysteine 

metabolism.  As has been previously discussed herein, these factors include dietary intake 

and nutritional status, genetic contributions, environmental or pharmacological exposures, 

and hormonal balance.  The majority of the research presented in the remainder of this 

document is focused on the effects of retinoids and a diabetic condition on methyl group and 

homocysteine metabolism, including epigenetic regulation of DNA via methylation.  

Therefore, it is important to review basic concepts related to the function of retinoids and the 

pathology of diabetes, as well as to examine the current literature describing interactions 

between retinoids or a diabetic condition and metabolic and epigenetic aberrations. 

 

Retinoids  

Retinoids comprise the vitamin A family of compounds including retinyl esters, 

retinal, retinol, and retinoic acid.  Retinal is used in the visual cycle, but for all other 
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purposes, retinoic acid is the biologically active form.  Retinoic acid is a ligand for the 

retinoic acid receptor (RAR).  The retinoic acid-RAR complex then dimerizes with the 

retinoid x receptor.  This heterodimer recognizes the canonical retinoic acid response 

elements (RAREs) in the promoter regions of genes, thereby stimulating transcription.  The 

pleiotropic effect of vitamin A may be attributed to the presence of RAREs in the promoter 

region of genes for several transcription factors which can explain the diverse necessity of 

vitamin A for cellular differentiation, and optimal reproductive and immune function (159).  

 Retinoids are widely used in cancer prevention and treatment (159,160), as well as 

for dermatological disorders such as acne, rosacea, and psoriasis (160).  Despite 

widespread use, there still remain concerns regarding the toxicity of retinoids, thus 

necessitating further investigation.  Retinoic acid is absorbed, transported, and metabolized 

differently than other forms of vitamin A, such as retinol or carotenoids (161,162).  Retinoic 

acid is rapidly absorbed and is bound by albumin during transport to the liver by the portal 

vein, rather than via the traditional absorption and transport of fat-soluble vitamins by 

chylomicrons and entrance to the lymphatic circulation prior to entering the bloodstream.  

Furthermore, the half-life of all-trans-retinoic acid in plasma is <1 hr in both rodents and 

humans, and retinoic acid is not stored in the liver or extrahepatic tissues (161,163), though 

it does alter vitamin A metabolism by increasing expression of lecithin:retinol acytransferase, 

which esterifies retinol to retinyl esters for storage (164,165).  Intracellular retinoic acid may 

be bound to its associated receptors for biological activity, bound by cellular retinoic acid-

binding protein, or catabolized (166).  The catabolism of retinoic acid to 4-oxoretinoic acid or 

retinoyl β-glucuronide is catalyzed by cytochrome P450 enzymes, which can be upregulated 

in response to retinoic acid (164,167).  Although this regulatory effect suggests maintenance 

of vitamin A homeostasis, all-trans-retinoic acid is more biologically active and appears to be 

more toxic than other retinoids (163,166).  Hypervitaminosis A presents with nausea, 

vomiting, fatigue, headache, dermal irritation, skeletal pain, and hepatotoxicity, including 

elevated serum AST and ALT activity, lipid accumulation, fibrosis, and cirrhosis if left 

untreated (163,168). Vitamin A toxicity is generally treated simply by halting excess vitamin 

A intake and addressing conditions which may predispose individuals to toxic effects such 

as excessive intake of ethanol or of other fat-soluble vitamins, protein malnutrition, and pre-

existing liver or renal disease (161,168). 
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We have shown that treatment of rats with excess vitamin A at pharmacological 

doses results in abnormal methyl group and homocysteine metabolism, perturbation of SAM 

and SAH levels, and DNA hypomethylation (169-171).  Rats treated with vitamin A in the 

form of retinyl palmitate, cis-retinoic acid, or all-trans-retinoic acid (RA) had elevated hepatic 

GNMT activity and abundance (47,48,169-171).  This effect appears to be specific to the 

liver, with no changes in GNMT activity and/or abundance observed in the pancreas or 

kidney (47).  The hepatic induction of GNMT was most dramatic in the RA-treated rats, 

which also exhibited DNA hypomethylation as measured by the SssI methyl-acceptance 

assay (170).  The results of this study have also been replicated in a cell culture model of 

somatic bovine cells, in which treatment with RA resulted in relative demethylation of DNA 

(172).  The induction of GNMT and DNA hypomethylation were accompanied by increased 

expression of Oct4, a marker of pluripotency, compared to control cells, thereby indicating 

deregulation of differentiation.  It is also of importance to note that RA treatment in the rat at 

therapeutic doses was also sufficient for induction of hepatic GNMT, though DNA 

methylation status was not assessed in that particular study (171). 

Mechanistically, the increase in GNMT activity is likely mediated by the effect of 

retinoids on hepatic folate metabolism.  MTHFR activity was suppressed in rats fed a diet 

high in retinyl acetate or retinyl palmitate, thereby decreasing 5-CH3-THF levels, presumably 

relieving the allosteric inhibition of GNMT by 5-CH3-THF (173).  RA treatment has also been 

shown to increase hepatic MS activity (55,171).  However, RA treatment was without effect 

on PEMT, BHMT, and CBS (48,50,55).  The impact of these perturbations on plasma 

homocysteine and glutathione levels was varied, generally lowering or leaving plasma 

homocysteine concentrations unchanged.  Plasma homocysteine and glutathione levels 

were unaffected by retinoid treatment alone (169,170), with one report of homocysteine 

levels markedly decreased by 10 d of high-dose retinoid treatment (171).  RA treatment has 

also been shown to interact with other factors perturbing methyl group metabolism, such as 

hypo- or hyperthyroidism and diabetes (48,51,55).  

There are few reports of the effects of retinoid treatment on DNA methylation status.  

Retinoic acid is also known to be teratogenic with central nervous system, ear, eye, and 

craniofacial abnormalities being the most common developmental effects (160,166).  In 

mice, the treatment of dams with RA during pregnancy resulted in DNA hypomethylation of 

both genomic and CpG island DNA within the palate of the affected offspring (174).  In the 
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treatment of cancer, retinoids are used as differentiation therapy.  This effect has been 

studied in cancerous and embryonic stem cells models and is proposed to be due in part to 

epigenetic regulation of imprinted genes and genes for telomerase and cellular regulatory 

factors (175-177).  Interestingly, evidence from acute promyelocytic leukemia cell lines and 

blasts from patients, it appears that effects on epigenetic regulation may be mediated in part 

by direct downregulation of the expression of DNMTs by RA (178).  The effect of RA therapy 

on DNA methylation has not been explored in the normal liver in rodents or humans.    

 

Diabetes 

Diabetes mellitus affects approximately 12% of the U.S. population and data 

suggests that the incidence rate will continue to rise in the U.S. and worldwide over the next 

several years (179).  It is estimated that ninety-five percent of cases are type 2, while the 

remaining 5% are type 1.  Though both types of diabetes are characterized by altered 

glucose metabolism and hyperglycemia, the pathologies of the diseases are different.  Type 

1 diabetes, often called insulin dependent diabetes mellitus, results from the loss of insulin-

producing pancreatic β-cells and consequently, a lack of insulin.  Although the mechanisms 

responsible for β-cell destruction are not entirely clear, in most cases it is proposed to be the 

result of an autoimmune response that has been associated with exposures to particular 

viruses and a genetic predisposition (180).  Type 1 diabetic patients tend to develop the 

disease early in life, which is why it has also been called childhood-onset diabetes.  Type 2 

diabetes had traditionally been thought of as adult-onset diabetes, but is becoming more 

prevalent in children and adolescents (179).  Type 2 diabetes, which is also known as non-

insulin dependent diabetes mellitus, is characterized by insulin resistance in which the cells 

do not respond appropriately to insulin despite hyperinsulinemia (181,182).  Insulin 

resistance is proposed to develop from lipid overload, abnormal lipid metabolism, and 

chronic inflammation (183).  Over time, many type 2 diabetics also develop beta cell 

dysfunction and impaired insulin secretion.  The pathogenesis of type 2 diabetes is believed 

to originate from a combination of genetic and lifestyle factors.  Type 2 diabetes is often 

clustered with the characteristics of metabolic syndrome, which includes abdominal obesity, 

elevated serum triglycerides and/or depressed HDL-C, hypertension, and hyperglycemia or 

insulin resistance (184).  Notably, both types of diabetes are also associated with the 
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development of secondary complications including macrovascular (i.e. cardiovascular 

disease, coronary heart disease, stroke) and microvascular (i.e. nephropathy, neuropathy, 

retinopathy) diseases (179,182).  Physiologically, both type 1 and 2 diabetic conditions are 

also characterized by hyperglycemia and a relative excess of glucocorticoids compared to 

insulin, whether based on actual concentrations or due to tissue insensitivity.   

The rat models of both type 1 and type 2 diabetes used in our studies are well-

characterized and closely resemble the condition of human patients.  Streptozotocin (STZ) 

is used to induce a type 1 diabetic state, in part by producing an autoimmune response 

against the pancreatic beta cells, similar to that observed in human type 1 diabetes (185).  

Following STZ injection, symptoms of diabetes such as hyperglycemia, hyperphagia, 

polyuria, and failure to gain or maintain weight manifest within days (186).  For our type 2 

model, we utilized the Zucker diabetic fatty (ZDF) rat which contains a mutation in the Lepr 

gene, which encodes for the leptin receptor (187).  This mutation results in an inability for 

proper interaction between leptin and leptin receptor, thereby abrogating the suppressive 

effect of leptin on appetite and insulin secretion.  In this way, the pathogenesis of the ZDF 

rat closely resembles the human type 2 diabetic condition with hyperinsulinemia, 

progressing to hyperglycemia and eventual beta cell failure.  Hyperinsulinemia is observed 

very early in life, the initial rise in blood glucose occurs between 7 and 8 weeks of age, with 

a frank diabetic condition presenting by 12 weeks, and beta cell failure occurring between 

22 and 42 weeks in male ZDF rats (188).  Both animal models are well-established and 

have been used extensively for the study of diabetes-associated dyslipidemia (189,190), 

atherosclerosis (191), abnormal vascular response (188,192), nephropathy (186,193,194), 

retinopathy (195,196), and neuropathy (197,198).  However, it may be noted that the STZ-

induced model of diabetes exhibits more moderate renal dysfunction than some other 

models of type 1 diabetes (186), such as the nonobese diabetic mouse, which we have 

used in subsequent studies.    

Perturbations of hepatic methyl group and homocysteine metabolism, as well as the 

net effect on plasma homocysteine levels, in an early diabetic condition has been well 

characterized in rodents (Figure 2 ).  Upregulation of transmethylation has been observed in 

both rodent models and human patients.  GNMT and PEMT are upregulated by 

glucocorticoids, STZ- and alloxan-induced type 1 diabetes (32,48-50).  Treatment of rats or  
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(199) and early type 2 diabetes (52).  In contrast, the effect of a diabetic condition on BHMT 

is consistent and well-characterized.  BHMT mRNA expression and/or activity were 

increased in diabetic rats and in hepatoma cells treated with glucocorticoids (48-50,52,200); 

this effect was reversed or attenuated with treatment by insulin in the STZ-induced diabetic 

model (200).  Hepatic CBS and CGL activities were increased in both glucagon-treated, as 

well as STZ-diabetic and ZDF rats (48,52,126,201).  CBS mRNA abundance was also 

increased in glucocorticoid-treated hepatoma cells (201). Insulin abrogated the increases in 

CBS activity (201,126). The effects of STZ-diabetes and insulin treatment were also 

observed at the transcriptional level as evidenced by similar changes in CBS mRNA (201).   

There have been very few studies of methyl group and homocysteine metabolism in 

the diabetic kidney.  House et al (126) reported a lack of effect of either glucagon treatment 

or STZ-diabetes, whereas Jacobs et al (199) reported that renal MS and MTHFR activities 

were suppressed by a type 1 diabetic condition.  Methyl group and homocysteine 

metabolism have not be investigated in the kidney of the ZDF rat.  Thus, all changes 

discussed thus far were observed in the liver and in an early diabetic condition (i.e. within 10 

d of onset).  The net effect of these perturbations results in lowered plasma homocysteine 

levels (48-52).  Early in the course of type 1 diabetes, diabetic patients also have been 

found to have lower fasting and post-methionine load plasma homocysteine concentrations 

relative to healthy controls (202).  However, in advanced diabetes it has been shown that 

MTHFR activity was suppressed in lymphocytes of diabetic patients (128) and both hepatic 

transmethylation and transsulfuration flux were decreased in diabetic nephropathy (129).  

This occurrence of metabolic disturbance in advanced diabetes, concurrent with the 

development of hyperhomocysteinemia in diabetic nephropathy (128,203) suggests the 

need to study the chronic diabetic condition, with particular attention to the influence of both 

the liver and the kidney. 

 Recently, diabetes has also been associated with alterations of epigenetic 

mechanisms, specifically histone modifications.  These studies of both cell culture and 

mouse models of hyperglycemia or diabetes have identified pathways or categories of 

genes with altered patterns of histone methylation.  The targets of this regulation include 

proteins involved in signal transduction, oxidative stress, immune function, and inflammatory 

pathways (204-208).  These effects were maintained even after the restoration of 

normoglycemia, suggesting a “metabolic memory” (204-206) which should be characteristic 
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of true epigenetic regulation.  The alterations of histone modifications were also cell-type 

specific (207,208).  This highlights the need for study of epigenetic regulation in the tissue of 

interest whenever possible.  Efforts should also be made to profile DNA methylation status 

of genome to complement this knowledge of histone modifications. 

Our long-range goal is to understand how diabetes-mediated alterations in metabolic 

processes may serve as a link to the numerous complications associated with diabetes, and 

how dietary intervention can prevent these adverse effects.  The focus of the studies 

presented here was on perturbations of key enzymes and metabolites of methyl group and 

homocysteine metabolism that occur in both type 1 and type 2 diabetes, and how these 

changes may be linked to alterations of epigenetic regulation.  To date, most studies have 

assessed only hepatic metabolism in the early diabetic condition and epigenetic regulation 

in diabetes has not been fully addressed within tissues of interest.  This includes the liver, 

kidney, and heart as tissues which contain the full complement of methyl group and 

homocysteine metabolic pathways and/or are affected by the secondary pathologies of 

diabetes.  Lack of such knowledge is an important problem, because understanding the 

metabolic link between these processes is essential for establishing dietary 

recommendations for preventing metabolic and epigenetic aberrations which may be related 

to secondary complications of diabetes, a major focal point for future research. 
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CHAPTER 3: Long-term, thrice-weekly supplementation  with retinoic acid alters 

methyl group metabolism, but does not induce change s in DNA methylation status in 

rat liver 

A manuscript to be submitted to Hepatology. 

Kelly T. Williams and Kevin L. Schalinske 

 

Abstract 

S-adenosyl methionine-dependent transmethylation reactions are important in many 

biosynthetic and regulatory processes such that compromised methyl group availability 

results in a number of pathologies.  For example, global DNA hypomethylation is associated 

with genomic instability and overexpression of genes.  Glycine N-methyltransferase is a key 

protein in the regulation of methyl group supply and utilization; thus, it is important to 

understand how nutritional and/or hormonal factors influence GNMT.  Previously it has been 

demonstrated that administration of all-trans-retinoic acid (RA) rapidly induces glycine N-

methyltransferase and global DNA hypomethylation during short-term (7-d) studies.  The 

aim of this study was to investigate the long-term effects of RA administration on GNMT 

expression, DNA methylation, and hepatotoxicity.  Rats were treated orally with either 0, 5, 

or 30 µmol RA/kg body weight three times per week for a total of 2, 4, 8, 16, or 24 wk.  

Treatment with either dose of RA induced GNMT activity and abundance at 2 wk, and this 

increase was observed at all timepoints in the study.  Serum activities of alanine 

aminotransferase and aspartate aminotransferase were not affected by RA treatment.  

Interestingly, RA treatment resulted in significantly decreased hematocrit levels, as well as 

lowered plasma glutathione concentrations.  Chronic administration of RA results in a 

sustained increase in GNMT activity and protein abundance with little indication of 

hepatotoxicity and no effect on DNA methylation status. However, chronic administration of 

retinoic acid, even at therapeutic levels, can adversely impact hematopoiesis and 

antioxidant defense. 
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Introduction   

 Folate-dependent one-carbon metabolism is central to a number of biochemical 

processes including the biosynthesis of nucleic acids and the regeneration of methionine 

from homocysteine by methionine synthase (MS) (1).  The methyl donor for the MS reaction 

is 5-methyltetrahydrofolate (5-CH3-THF), which is synthesized by methylenetetrahydrofolate 

reductase (MTHFR) from 5,10-methylenetetrahydrofolate (5,10-CH2-THF).  The products of 

the MS reaction are methionine and tetrahydrofolate, which can be recycled back into the 

folate pool.  Methionine can be activated to S-adenosylmethionine (SAM), which serves as a 

methyl group donor for more than 100 different SAM-dependent transmethylation reactions 

(2,3).  Methyltransferases catalyze the transfer of a methyl group from SAM to a methyl 

acceptor molecule, which may include proteins, lipids, nucleic acids or other small 

molecules, thereby generating a methylated product and S-adenosylhomocysteine (SAH), 

which can subsequently be metabolized to homocysteine.  Most SAM-dependent 

methyltransferases are inhibited by SAH, therefore the SAM:SAH ratio is purported to be an 

indicator of transmethylation potential.   

Glycine N-methyltransferase (GNMT) is highly abundant in liver (1-3% of cytosolic 

protein) and is a proposed regulator of hepatic methyl group supply and utilization (2,4). The 

reaction catalyzed by GNMT involves the transfer of a methyl group from SAM to glycine, 

thereby forming sarcosine, a product for which the physiological function is unclear.  The 

regulation of GNMT is unique in that it is inhibited by SAH to a lesser extent than most other 

methyltransferases and is intricately tied to one-carbon folate metabolism (Figure 1 ).  

GNMT is allosterically inhibited by 5-CH3-THF (5), whereas MTHFR activity is suppressed 

by SAM (6).  Therefore, when methyl group supply is high, SAM concentrations are elevated 

and MTHFR activity is inhibited, decreasing the synthesis of 5-CH3-THF and relieving 

inhibition of GNMT.  Increased GNMT activity would be expected to decrease SAM levels, 

thereby restoring the SAM:SAH ratio.  Conversely, when methyl supply is low, SAM levels 

would also be decreased, relieving the inhibition of MTHFR, increasing 5-CH3-THF 

concentrations and inhibiting GNMT, thereby conserving methyl groups.  Taken together 

with recent reports that the SAM:SAH ratio is elevated up to 100-fold in two newly 

developed GNMT knockout mouse models (7,8), there is strong evidence for the role of 

GNMT in the regulation of transmethylation potential.  Given this critical regulatory role, it is  
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important to gain a greater understanding of how nutritional or 

influence GNMT expression and activity.

Retinoid compounds are widely used as t

in cancer prevention and treatment (9,10)

daily doses of retinoid compounds can alter 

metabolism, in part by the induction of GNMT.  

protein abundance increases in 

acid or all-trans-retinoic acid (RA)

important to gain a greater understanding of how nutritional or pharmacological factors may 

influence GNMT expression and activity. 

Retinoid compounds are widely used as therapies for dermatological conditions and 

cancer prevention and treatment (9,10).  It has previously been demonstrated that large 

retinoid compounds can alter folate one-carbon and methyl group 

metabolism, in part by the induction of GNMT.  We have shown that GNMT activity and 

rotein abundance increases in response to treatment with retinyl palmitate, 9

retinoic acid (RA) (11-13).  RA was the most potent inducer of GNMT
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also resulted in significant DNA hypomethylation during short-term studies (7-d), suggesting 

that the induction of GNMT compromises methyl group availability for other SAM-dependent 

transmethylation reactions (13).  It has long been known that the reduction of methyl group 

availability by chronic feeding of a methyl-deficient diet results in global and gene-specific 

DNA hypomethylation, which is associated with genomic instability and overexpression of 

genes, specifically the proto-oncogenes c-myc, c-fos, and c-ras (14-16).  The long-term 

adverse effects of a methyl deficient diet are an independent cause of liver fibrosis, 

cirrhosis, and hepatocellular carcinoma.  Hepatotoxicity is also a potential side effect of 

retinoids, with increased serum ALT and AST activity reported in up to 33% of patients (10).  

Although the impact of short-term retinoid treatment on methyl group metabolism is well-

characterized, data are lacking for effects  of retinoid administration after several months, 

which is the usual duration of therapeutic treatments.  Therefore, the aim of the current 

study was to investigate the long-term effects of RA administration on GNMT expression, 

DNA methylation and hepatotoxicity 

 

Materials and Methods 

Chemicals and reagents  Reagents were obtained as follows:  2,4-dinitrophenylhydrazine, 

RA, Sigma-Aldrich Chemical Co. (St Louis, MO); Coomassie Plus Protein Reagent, Pierce 

Chemical; enhanced chemiluminescence Western blotting detection reagents, Amersham 

Biosciences; goat anti-mouse horseradish peroxidase secondary antibody Southern 

Biotechnology (Birmingham, AL); phenylmethylsulfonyl fluoride (PMSF), Calbiochem; S-

adenosyl-L-[methyl-3H] methionine, New England Nuclear (Boston, MA).  GNMT antibodies 

were provided by Yi-Ming Chen, National Yang-Ming University, Taipei, Taiwan (17).  All 

other chemicals and reagents were of analytical grade. 

 

Animals  All animal protocols were approved by and conducted in accordance with the 

guidelines set forth by the Iowa State University Institutional Animal Care and Use 

Committee.  Male Sprague-Dawley rats (50-75 g at onset) were housed in individual cages 

with a 12:12 hr light:dark cycle, and given free access to water and semi-purified diet as 

previously described (11).  Rats were randomly assigned to a treatment dose and duration 
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(n= 5-6 per group, 72 animals total).  The treatment regimen consisted of 0, 5, or 30 µmol 

RA/kg body weight (control, low RA, high RA) administered orally in corn oil vehicle three 

times per week for a total of 2, 4, 8, 16, or 24 wk.  Treatment doses were chosen based on 

the normal dosages for retinoid therapies and based on previous dose-response studies 

demonstrating that the greatest induction of GNMT was with a dose of 30 µmol/kg body 

weight (18).  The 5 µmol/kg body weight dose is equivalent to 1.5 mg/kg body weight; 

treatment for dermatological conditions is usually prescribed at 0.5-2 mg/kg body weight/d 

for 6 months (19).  Treatment protocol was designed to minimize dermatological irritation. 

All treatments were initiated immediately after an acclimation period and rats were 

euthanized at the end of the each treatment period.  Animals were anesthetized by 

intraperitoneal injection with ketamine and xylazine (90 and 10 mg/kg respectively), 

heparinized whole blood samples were collected by cardiac puncture, and livers were 

rapidly excised.  An aliquot of whole blood was collected in hematocrit capillary tubes, 

sealed, and percent hematocrit was determined after centrifugation for 5 min in an Autocrit 

Ultra 3 Microhematocrit Centrifuge (BD Diagnostics, Franklin Lakes, NJ).  A portion of the 

liver was immediately homogenized and cytosolic extracts prepared as previously described 

(20,21); the remainder was snap frozen in liquid nitrogen and subsequently stored at -70°C. 

 

GNMT activity and abundance  GNMT activity was determined based on the method of 

Cook and Wagner (22) with minor modifications (11).  Briefly, 250 µg protein was added to a 

reaction mixture of 0.2 mol/L Tris buffer (pH 9.0), 5 mmol/L dithiothreitol, 2 mmol/L glycine, 

and 0.2 mmol/L S-adenosyl-L-[methyl-3H]methionine and incubated at 25°C for 30 min.  

Reaction was stopped by addition of 10% trichloroacetic acid and unreacted SAM was 

removed by addition of activated charcoal and centrifugation.  Aliquots of supernatant were 

used for liquid scintillation counting.  GNMT abundance was assessed using immunoblotting 

and subsequent chemiluminescent detection as described previously (20).  SigmaGel 

Software (SPSS, Chicago, IL) was used for densitometric analysis of relative abundance.  

 

Plasma homocysteine and glutathione Plasma samples were derivatized for 

determination of plasma homocysteine and glutathione as described by Ubbink et al (23) 
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with minor modifications (24).  Homocysteine and glutathione were analyzed by HPLC with 

fluorometric detection by injecting 100 µL of sample onto a µBondapak C18 Radial-Pak 

column (Waters, Milford, MA) using a mobile phase of 40 mL/L acetonitrile in 0.1 mol/L 

potassium phosphate buffer (pH 2.1).  N-acetylcysteine (1 mmol/L) was used as an internal 

standard. 

 

DNA methylation  Genomic DNA was isolated from snap frozen tissue using a commercial 

kit (cat # A1125, Promega).  Global and CpG island DNA methylation status was determined 

by the method of Progribny et al (25) and as described previously (21).  Briefly, 1 µg DNA 

was digested with the methylation-sensitive restriction enzymes HpaII and BssHII – for 

assessment of global and CpG island DNA methylation respectively, followed by cytosine 

extension assay with Amplitaq DNA Polymerase (Applied Biosystems), and [3H]-dCTP.  

After samples were applied to Whatman anion exchange paper, washed in 0.5 mol/L sodium 

phosphate buffer, and dried, liquid scintillation counting was utilized for determination of 3H 

incorporation.  

 

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity  

Plasma levels of ALT and AST activity were determined using the Reitman-Frankel method 

(26) with minor modifications.  Briefly, 100 µL of plasma was added to 500 µL substrate mix 

and incubated at 37˚C for 30 min or 1 hr for ALT and AST assays, respectively.  The 

substrate mix consisted of 0.1 mol/L sodium-potassium phosphate buffer (pH 7.4), 2 mmol/L 

α-ketoglutarate, and 200 mmol/L alanine or aspartate for assessment of ALT or AST 

respectively.  Following incubation, 500 µL of a color reagent containing 0.1 mol/L 2,4-

dinitrophenylhydrazine in 1 mol/L HCl was added to all samples, which were then incubated 

at room temperature for 20 min.  Absorbance was measured on a spectrophotometer at 510 

nm and compared to a standard curve for determination of ALT and AST activity.    

 

Statistical analysis  For each timepoint, data for each treatment group were subjected to a 

one-way ANOVA followed by Fisher’s least significant difference test for multiple 

comparisons (SigmaStat, SPSS, Chicago, IL).  When equal variance or normality tests 
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failed, the ANOVA on ranks procedure was utilized.  Data from all timepoints were analyzed 

by two-way ANOVA followed by Fisher’s least significant difference test for multiple 

comparisons to test for effects of time, RA treatment, or time x treatment interactions. 

Differences were considered significant at P < 0.05; trends were noted at 0.05 < P < 0.1. 

 

Results  

Induction of GNMT by long term thrice-weekly RA treatment   

Elevation of GNMT activity by administration of RA was observed at all measured 

timepoints, with the exception of 4 wk (Figure 2A ).  The increases in GNMT activity were 

generally associated with increases in GNMT abundance, which were observed at all 

timepoints (Figure 2B ).  Consistent with our previous short-term studies (18), RA 

administration resulted in the elevations of GNMT activity and abundance in a dose-

dependent manner.  Moreover, this effect was also observed at both early and late 

timepoints in this study of RA treatment. 

 

RA treatment had no effect on DNA methylation status   

As measured by the method of Pogribny et al (25), an increase in [3H]-dCTP 

incorporation into DNA digested by methylation-specific restriction enzymes indicates 

hypomethylation, whereas a decrease indicates hypermethylation.  However, there were no 

observed differences in [3H]-dCTP incorporation between treatment groups at 2 or 24 wk 

whether the DNA was digested with HpaII or BssHII (Table 1 ).  This signifies that there were 

no overall changes in global or CpG island DNA methylation status. 

 

Indicators of hepatotoxicity were minimally affected by RA treatment   

RA treatment had no effect on rat weight or weight gain between groups at each 

respective timepoint (Table 2).  Likewise, there was no evidence of RA-induced 

hepatomegaly based on a lack of effect of RA administration on relative liver weight (Table 

2).  However, when all data was subjected to a two way ANOVA, in addition to the 
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Figure 2.   RA treatment of rats at 5 or 30 µmol/kg body weight increases GNMT activity 

and/or abundance in a dose-dependent manner.  (A)  Hepatic GNMT activity levels and  (B)  

hepatic GNMT protein levels relative to the control, data are means ± SEM, different letters 

denote a significant difference between groups within that timepoint, p < 0.05. 
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significant effects of time (p < 0.001), as would be expected due to growth of the animals, 

there were also slight trends towards decreased body weight (p = 0.062) and weight gain (p 

= 0.098), as well as increased relative liver weight (p = 0.097) associated with RA treatment.  

Plasma ALT and AST activity levels at 24 wk were also used as biomarkers of 

hepatotoxicity.  Activities of these enzymes are high in liver, but normally low in plasma, 

therefore ALT and AST activities are only high in plasma when damage to the liver results in 

release of the enzymes into the circulation.  There were no significant differences observed 

in plasma ALT or AST activity at 24 wk (Table 3 ), indicating a lack of hepatotoxicity. 

 

Long term RA treatment decreased plasma glutathione concentrations. 

RA treatment did not have a significant effect on plasma homocysteine levels at any 

of the individual timepoints assessed.  However, two-way ANOVA revealed a trend towards 

a decrease in homocysteine with RA treatment (p = 0.073, representative data from 24 wk 

shown in Table 3 ).  At 24 wk, glutathione levels were found to be decreased by 28% in 

animals receiving the high RA treatment compared to the control group (p = 0.013).  The 

plasma glutathione concentration was also 11% lower in low RA vs. controls, though this 

difference did not attain significance (p = 0.103).  There were no differences in glutathione 

levels between treatment groups detected at earlier timepoints or by two-way ANOVA 

analysis (data not shown). 

 

Hematocrit levels are decreased by long-term RA administration  

Given the well-established interaction between vitamin A and iron metabolism, as 

well as the role of vitamin A status on cellular differentiation, hematocrit levels were 

determined as a measure that would be sensitive to either of these effects.  There were no 

changes observed in hematocrit levels at 2 wk, but beginning at 4 wk hematocrit levels were 

lower in RA-treated rats compared to control animals (Figure 3 ).  In general, this decrease 

in hematocrit was observed in all rats receiving RA, and two-way ANOVA revealed a 

significant effects of RA, time, and a treatment by time interaction (p < 0.001). 
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Figure 3 .  Hematocrit levels are decreased by RA treatment. Data are means ± SEM (n = 5-

6).  Different letters within a time indicate a significant difference between group means, p < 

0.05.  

 

Discussion 

 Homeostasis of methyl group and one-carbon metabolism are essential for many 

processes fundamental to health due to involvement in cellular growth and differentiation, as 

well as methylation of critical cell components.  Although short-term effects of RA treatment 

on hepatic methyl group and homocysteine metabolism have been established, chronic 

effects have yet to be fully investigated.  In this study, we found that long-term thrice-weekly 

RA administration resulted in sustained induction of hepatic GNMT activity, but was without 

effect on DNA methylation status.  There were minimal to no signs of hepatotoxicity, but 
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decreased plasma glutathione and markedly lower hematocrit in RA-treated rats suggests 

the potential for adverse effects systemically due to decreased antioxidant defense or on 

specific extrahepatic tissues, such as bone. 

 We have previously demonstrated that the induction of GNMT by RA is rapid, 

significant after just one treatment, and dose-dependent (18).  The induction of GNMT is 

also consistently characterized by elevations in both activity and protein abundance (11-13).  

Similar to these short-term studies, we have demonstrated that GNMT activity and/or 

abundance in rats treated with RA at all timepoints from two to 24 wk.  The increase in 

GNMT may be due in part to the effects of RA on folate one-carbon metabolism.  Rats fed a 

diet high in retinyl acetate or retinyl palmitate or treated with RA have suppressed MTHFR 

activity and/or elevated MS activity (15,24,27).  Either of these alterations, or both in 

concert, would be expected to lower 5-CH3-THF concentrations, which was measured and 

observed in rats fed high-vitamin A diets (27). GNMT activity can be enhanced by 

phosphorylation of the protein, but when 5-CH3-THF is bound to GNMT, this phosphorylation 

was shown to be inhibited in vitro (5).  Therefore, with lower intracellular levels of 5-CH3-

THF in the liver, the allosteric regulation of 5-CH3-THF would be relieved, GNMT might be 

more easily phosphorylated and specific activity might increase.  Perturbation of folate 

status and homocysteine concentrations have been documented in two studies of humans 

treated with retinoids.  Patients treated with 13-cis-retionic acid (0.5 mg/kg body weight) for 

45 d had elevated plasma homocysteine (28), whereas Chanson et al (29) found no change 

in plasma homocysteine, but folate metabolism was perturbed such that 5-CH3-THF levels 

decreased by ~15-20%. 

In addition to the potential role of altered folate metabolism, transcriptional and/or 

translational control of GNMT is suggested by the strong correlation between GNMT protein 

abundance and activity as was found here (r = 0.511, p < 0.001) and in a previous study 

(13).   Although approximately half the change in GNMT activity can be explained by altered 

transcriptional and/or translational control of GNMT by RA administration, the mechanism by 

which this occurs is not fully understood.  A likely explanation may be found in the recent 

analysis of the promoter region of GNMT which identified several putative RAR and RXR 

binding sites within the 1800 kb upstream of the transcriptional start site (30).  Furthermore, 

a binding site for Sp1 was also identified and Sp1 has been implicated in RA-induced 

expression of other proteins in several extrahepatic tissues (31-33).   Immunoprecipitation 
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for RAR or RXR followed by immunoblotting for RAR and Sp1 has demonstrated that 

RAR/RXR can interact directly with Sp1 to stimulate transcription (31).  However, the 

induction of GNMT by retinoids has been shown to be tissue-specific (13) and these 

interactions between RAR/RXR and their putative binding sites within the GNMT promoter or 

Sp1 have not been described in the liver.  Rather, when HepG2 cells, a rat hepatoma cell 

line, were used to characterize the interactions at the human MRP3 gene promoter, 

RAR/RXR was shown to decrease Sp1 binding in a dose-dependent manner (34).  Notably, 

the promoter for this gene does not appear to contain either a RARE or atypical RARE, so 

decreased Sp1 binding may not be the effect observed within a promoter with a RARE site 

in liver.  Additional characterization of the GNMT promoter and its interactions with 

transcription factors presents a promising direction for future investigations into the 

regulation of GNMT.  

 Despite the long-term upregulation of GNMT, the level of global and CpG island DNA 

methylation and plasma homocysteine levels were maintained.  We hypothesize this might 

be due to the intermittent nature of the treatment regimen or that other transmethylation 

reactions might be compromised in favor of maintenance of DNA methylation patterns.  

Retinoic acid has unique characteristics of absorption, transport, and metabolism relative to 

other forms of vitamin A, such as retinol or carotenoids (35,36).  Retinoic acid is rapidly 

absorbed and travels to the liver via the portal vein and bound by albumin, rather than by 

absorption and transport in chylomicrons and entrance to circulation after lymphatic 

circulation, as for other forms of vitamin A.  Additionally, the half-life of all-trans-retinoic acid 

in plasma is <1 hr in both rodents and humans, and it is not stored in neither liver nor 

extrahepatic tissues (35,37).  Given the observed kinetics of retinoic acid, it is possible that 

daily RA treatment is necessary for alteration of DNA methylation status and also suggests 

the possible influence of other regulatory mechanisms in addition to the upregulation of 

GNMT.  It is also possible that there were specific changes in DNA methylation patterns that 

were not measurable by this assay, which only assesses total changes in methylation 

status.  Interestingly, since our initial report of RA-induced hypomethylation, studies have 

been performed in vitro with the aim of identifying agents for reprogramming of cells for 

cloning.  Eilertsen et al (38) report that in bovine somatic cells, treatment with RA (100 

nmol/L) induced GNMT activity, resulting in a 25% decrease in 5-methylcytosine content of 

DNA and upregulation of Oct4, a biomarker of pluripotency.  Although this study was 

preliminary in nature, it is interesting to note the dramatic effects on cellular phenotype 
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associated with RA-induced upregulation of GNMT expression and DNA hypomethylation.  

Genomic and CpG island DNA hypomethylation have also been observed in the tissue of 

cleft palates induced by maternal RA treatment of mice during pregnancy (39). 

Unfortunately, there appears to be little to no data characterizing the effect of RA on DNA 

methylation or the complete complement of methyl group and homocysteine pathways in 

humans.  Given the evidence of altered folate and homocysteine metabolism in humans 

(28,29), this may be a worthy avenue of investigation.   

In this study, there were few signs of hepatotoxicity as evidenced by a lack of effect 

on plasma ALT and AST activities, and very moderate trends towards decreased body 

weight, weight gain, and increased relative liver weight.  Retinoid treatment in 

dermatological patients may be accompanied by transient increases in ALT or AST that are 

normally reversed by ending treatment (40).  In this experiment, ALT and AST activity was 

only measured at 16 and 24 wk (16 wk data not shown) and although there were no 

significant differences between groups at either time, it’s possible that a transient increase 

was missed.  Our results are also consistent with the results of Hotchkiss et al (41), who 

also found no change in plasma ALT and AST activity in rats given 10 or 15 mg RA/kg body 

weight – a larger dose than that used here, more similar to that prescribed to leukemia 

patients - for 10 or 15 wk.  These results indicate minimal risk of hepatotoxicity; however 

chronic RA-treatment was not without negative effects.  

Hematocrit was significantly decreased in response to both low and high RA 

treatment.  While the control animals’ hematocrit levels increased, as would be expected for 

a growing rat (42), hematocrit levels did not increase at a similar pace in RA-treated 

animals, suggesting compromised hematopoiesis.  Although vitamin A treatment is often 

used for the prevention and treatment of anemia (36), there are also clinical, experimental, 

and epidemiological data that retinoic acid can negatively affect bone and/or blood cell 

formation.  In a case study of an infant suffering from vitamin A intoxication, the bone 

marrow aspirant was found to contain vacuolated or binucleated erythroblasts (43).  A follow 

up in vitro study of primary bone marrow mesenchymal stem cells and K-562 cells 

(multipotent, hematopoietic) found that exposure to 20-80 µmol/L RA resulted in the 

inhibition of cell proliferation (43).  Alternatively, bone marrow diameter and area were 

decreased in both male and female rats given 15 mg RA/kg body weight for a treatment 

period of 15 weeks (41).  However, given the larger dosage used in this study and the lack 
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of effect in rats given a lower dose of RA or 13-cis-retinoic acid, it seems unlikely that 

reduced marrow content could account for the differences in hematocrit observed in our 

investigations.  The epidemiological data tells a slightly different story.  The results of four 

large epidemiological studies regarding the effect of vitamin A on bone suggests that intake 

as low as twice the RDA could be associated with increased risk of osteoporosis and risk of 

fracture (36).  Although others have not always shown a similar effect, there are several 

other potential side effects that warrant consideration in a risk-benefit analysis of treatment 

with retinoids.  In addition to the commonly reported side effects such as skin and eye 

irritation, retinoids are well known to be teratogenic (10).   Although still controversial, 

emerging data also suggests that retinoid treatment may be linked to the development or 

exacerbation of irritable bowel syndrome (42) and depression and suicidal tendencies (45).  

Lastly, we have shown a detrimental effect on antioxidant defense as indicated by lower 

plasma glutathione concentrations at 24 wk.  Hepatic levels may be more sensitive to 

retinoid treatment as de Oliviera et al (46) reported decreased hepatic glutathione 

concentrations after only 7 d of treatment, thereby creating an pro-oxidant environment. 

Intermittent treatment has been studied as an attractive option for therapeutic use 

due to associated negative side effects. When intermittent oral treatment with isotretinoin 

was provided for 6 mo, it was equally efficacious in reducing moderate acne as daily 

treatment, but it was not as successful in ameliorating severe acne (47).  Although daily oral 

isotretinoin treatment remains the gold standard of systemic acne treatment (48), the side 

effects associated with the intermittent treatment were less frequent and less severe than 

those associated with daily treatment (47).  The data from our study suggests that while 

overt clinical signs of vitamin A toxicity may not be present, metabolic perturbations and 

lowered hematocrit develop after just a few weeks and persist even with non-daily dosing of 

RA.  Antioxidant defense is also compromised after long-term supplementation.  Although 

symptoms of retinoid toxicity generally subside with no ill effects after withdrawal of RA 

treatment (19), there remains the possibility that perturbations experienced during treatment 

could put the patient at greater risk for complications in the future.  
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CHAPTER 4:  Type I diabetes leads to tissue-specific DNA hypome thylation in male 
rats 

Published in the Journal of Nutrition, 2008;138:2064-9 

Kelly T. Williams, Timothy A. Garrow, and Kevin L. Schalinske 

 

Abstract 

Numerous perturbations of methyl group and homocysteine metabolism have been 

documented as an outcome of diabetes.  It has also been observed that there is a transition 

from hypo- to hyperhomocysteinemia in diabetes, often concurrent with development of 

nephropathy.  The objective of this study was to characterize the temporal changes in 

methyl group and homocysteine metabolism in the liver and kidney, as well as to determine 

the impact these alterations have on DNA methylation in type 1 diabetic rats.  Male 

Sprague-Dawley rats were injected with streptozotocin (60 mg/kg body wt) to induce 

diabetes and samples were collected at 2, 4 and 8 wk.  At 8 wk, hepatic and renal betaine-

homocysteine S-methyltransferase activities were greater in diabetic rats, whereas 

methionine synthase activity was lower in diabetic rat liver and there was no difference in 

kidney.  Cystathionine β-synthase abundance was greater in the liver, but less in the kidney 

of diabetic rats.  Both hepatic and renal glycine N-methyltransferase (GNMT) activity and 

abundance were greater in diabetic rats; however, changes in renal activity and/or 

abundance were present only at 2 and 4 wk, whereas hepatic GNMT was induced at all 

timepoints.  Most importantly, we have shown for the first time that genomic DNA was 

hypomethylated in the liver, but not the kidney in diabetic rats.  These results suggest that 

diabetes-induced perturbations of methyl group and homocysteine metabolism lead to 

functional methyl deficiency, resulting in the hypomethylation of DNA in a tissue-specific 

fashion. 

Key words:  diabetes • DNA methylation • folate • homocysteine • rat 
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Introduction 

Perturbation of methyl group metabolism is associated with numerous pathologies, 

including cancer, cardiovascular disease, neurological problems, and birth defects (1-4).  

Methyl group supply is determined largely by two factors: dietary methyl intake and methyl 

group utilization.  The major dietary methyl donors are methionine, choline, and betaine (5).  

Production of 5-methyltetrahydrofolate (5-CH3-THF) from 5-methylenetetrahydrofolate via 

methylenetetrahydrofolate reductase (MTHFR) serves as an endogenous methyl donor.  

Methyl group metabolism consists of four processes: transmethylation, remethylation by 

folate/B12-dependent or -independent means, and transsulfuration.  Transmethylation 

reactions are essential for many biological processes and involve the transfer of a methyl 

group from S-adenosylmethionine (SAM) to various substrates including nucleic acids, 

lipids, and proteins by methyltransferases.  All SAM-dependent methyltransferase reactions 

ultimately result in the generation of S-adenosylhomocysteine (SAH) and subsequently 

homocysteine, which can be remethylated back to methionine or irreversibly catabolized by 

transsulfuration.  Remethylation of homocysteine to generate methionine occurs via folate-

dependent and/or –independent pathways.  For folate-dependent remethylation, the B12-

dependent enzyme methionine synthase (MS) utilizes a methyl group from 5-CH3-THF.  

Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the folate-independent 

remethylation of homocysteine using betaine, a methyl group donor derived from choline 

oxidation.  Catabolism of homocysteine via the transsulfuration pathway begins with the 

irreversible conversion to cystathionine by cystathionine β-synthase (CBS).   

Because methyl group metabolism is important in health and disease, identifying and 

understanding factors that have a regulatory role is essential.  Recently, diabetes has 

emerged as a condition characterized by disrupted methyl group metabolism. In the acute 

diabetic state, the expression and activity of both hepatic phosphatidylethanolamine N-

methyltransferase (PEMT) and glycine N-methyltransferase (GNMT) were elevated.  

Because PEMT and GNMT represent key SAM-dependent enzymes for phosphatidylcholine 

synthesis and regulation of methyl group metabolism respectively, this suggested that 

transmethylation was increased (6-9).  Inappropriate upregulation of GNMT would be 

expected to lead to wastage of methyl groups due to incorporation of the methyl groups into 

sarcosine.  For both type 1 and type 2 diabetic rat models, MS activity was decreased, 

whereas BHMT activity was markedly increased (7-10).  Elevated expression of CBS as a 
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function of diabetes also suggests enhanced catabolism of homocysteine via the 

transsulfuration pathway (7,9,11,12).  The net effect of these alterations was that hepatic 

levels of both methionine and betaine were decreased (9,11), suggesting the potential 

development of methyl deficiency.   Furthermore, both the activity of MTHFR in lymphocytes 

and the ratio of intracellular SAM:SAH, an indicator of transmethylation potential, in 

erythrocytes were decreased in diabetic nephropathy with an inverse relation to the severity 

of illness (13).  Transmethylation flux has also been shown to be suppressed in diabetics 

with renal dysfunction (14).  Taken together, this suggests that a diabetic condition has a 

profound impact on methyl group metabolism and that both the liver and kidney may be 

important in the pathophysiological progression of the disease.  

To date, most studies have been conducted early in the progression of the disease or 

were cross-sectional.  The goal of this study was to determine whether the perturbations of 

methyl group metabolism associated with a diabetic condition are sustained over time and 

how this might contribute to a functional methyl group deficiency, ultimately resulting in 

genomic hypomethylation and altered expression of proteins associated with DNA 

methylation, such as DNA methyltransferase 1 (DNMT1) (15).  Based on evidence that 

aberrations of methyl group metabolism were more severe in diabetics with renal 

dysfunction (13,14), it was also of interest to determine whether these effects were tissue-

specific. 

 

Materials and Methods  

Chemicals and reagents.   Reagents were obtained as follows:  [14C-methyl]-betaine was 

obtained from Moraveck; Coomassie Plus Protein Reagent, Pierce Chemical; DL-

homocysteine thiolactone, Sigma-Aldrich Chemical; DNMT1 (K-18) antibody and goat anti-

rabbit IgG-horseradish peroxidase, Santa Cruz Technologies; enhanced 

chemiluminescence Western blotting detection reagents and 5-[14C]-methyl-THF, Amersham 

Pharmacia; goat anti-mouse horseradish peroxidase secondary antibody Southern 

Biotechnology; phenylmethylsulfonyl fluoride (PMSF), Calbiochem; and S-adenosyl-L-[3H]-

methionine, New England Nuclear.  The GNMT antibody was provided by Y-M.A. Chen 

(National Yang-Ming University, Taipei, Taiwan) (16).  The CBS antibody was provided by J. 
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Kraus (University of Colorado Health Sciences Center).  All other reagents were of analytical 

grade.  

 

Rats and diets.  All animal experiments were approved by and conducted in accordance 

with guidelines established by Iowa State University Laboratory Animal Resources.  Thirty 

male Sprague-Dawley rats (100-124 g) were housed individually in plastic cages with a 12-h 

light-dark cycle.  All rats were given ad libitum access to a semi-purified diet (17) and water.  

After an acclimation period (4 d), rats were randomly assigned to either the control or 

diabetic treatment group for a total treatment time of 2, 4, or 8 wk (5 rats per group per 

timepoint).  One diabetic rat assigned to wk 8 died during wk 6.  All rats were given a single 

intraperitoneal injection of either vehicle (10 mmol/L citrate buffer, pH 4.5) or streptozotocin 

(STZ, 60 mg/kg body wt), for induction of type 1 diabetes.  At each timepoint, rats were 

anesthetized with an intraperitoneal injection of ketamine and xylazine (90 and 10 mg/kg 

body wt respectively), and heparinized whole blood samples were collected via cardiac 

puncture.  An aliquot of whole blood was saved for analysis of blood glucose (# 510, Sigma-

Aldrich).  The remaining blood was centrifuged at 4,000 × g for 5 minutes, followed by 

removal of the plasma layer and storage at -20°C unti l analysis.  The liver and left kidney 

were rapidly excised and a portion of each tissue was homogenized in ice-cold buffer 

containing 10 mmol/L sodium phosphate (pH 7.0), 0.25 mol/L sucrose, 1 mmol/L EDTA, 1 

mmol/L sodium azide and 0.1 mmol/L PMSF.  After centrifugation at 20,000 × g for 30 min at 

4°C, β-mercaptoethanol was added to the supernatants to a final concentration of 10 

mmol/L.  Remaining tissues were snap frozen in liquid nitrogen and stored at -70°C prior to 

isolation of genomic DNA (cat # A1125, Promega). 

 

GNMT and PEMT  GNMT and PEMT represent two important SAM-dependent 

transmethylation enzymes that also function to regulate homocysteine and methyl group 

metabolism.  GNMT activity was determined based on the method of Cook and Wagner (18) 

with minor modifications (17).  GNMT abundance was assessed using immunoblotting and 

subsequent chemiluminescent detection.  The 32 kDa subunit was separated using SDS-

PAGE.  The protein was transferred to a nitrocellulose membrane and incubated with GNMT 

antibody followed by incubation with goat anti-mouse horseradish peroxidase secondary 
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antibody.  Densitometric analysis (SigmaGel Software, SPSS, Chicago, IL) was used for 

relative quantification of GNMT abundance.  For PEMT activity, frozen liver was 

homogenized in 10 mmol/L Tris-HCl (pH 7.4) and 0.25 mol/L sucrose.  Following 

centrifugation at 16,000 × g  for 20 min at 4°C, the supernatant was removed and 

centrifuged at 100,000 × g for 60 min at 4°C.  The resulting microsomal pellet w as 

resuspended in 0.25 mol/L sucrose.  The enzymatic activity of PEMT was determined using 

the method of Duce et al (19) with minor modifications (6).     

 

BHMT and MS  Remethylation of homocysteine to methionine by the folate/B12-

independent and dependent pathways is controlled by the enzymes BHMT and MS, 

respectively.  For both enzyme assays, fresh homocysteine solutions (100 mmol/L) were 

prepared daily by dissolving a thiolactone derivative in 2 mol/L sodium hydroxide followed by 

neutralization with saturated monopotatssium phosphate (20).  As described previously (7), 

BHMT and MS activities were assessed by radioisotopic assays utilizing [methyl-14C-] 

betaine (20) and [methyl-14C-] tetrahydrofolate (21), respectively.   

 

CBS   The irreversible catabolism of homocysteine by the transsulfuration pathway is 

initiated by the reaction catalyzed by CBS.  Abundance of CBS was determined using 

immunoblotting and chemiluminescence in a method similar to that described for GNMT 

(22). The 63 kDa subunit of CBS was isolated using SDS-PAGE.  After electrophoretic 

transfer to nitrocellulose, the immunoblot was incubated with a polyclonal CBS antibody 

followed by incubation with goat anti-rabbit horseradish peroxidase secondary antibody and 

subsequent chemiluminescent and densitometric analysis.  

 

Homocysteine, SAM, and SAH analysis  Derivatization of plasma samples was performed 

for determination of plasma homocysteine as described by Ubbink et al (23) with minor 

modifications (7).  Homocysteine was analyzed by HPLC with fluorometric detection by 

injecting 100 µL of sample onto a µBondapak C18 Radial-Pak column (Waters, Milford, MA) 

using a mobile phase of 40 mL/L acetonitrile in 0.1 mol/L potassium phosphate buffer (pH 

2.1).  The addition of N-acetylcysteine (1 mmol/L) to each sample prior to derivatization 
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served as an internal standard.  For analysis of hepatic SAM and SAH concentrations, liver 

samples were prepared using the method of Fell et al (24) and SAM and SAH were 

separated and quantified by reverse-phase HPLC with UV detection as described (7).   

 

DNA methylation status  Digestion of hepatic and renal DNA followed by cytosine 

extension was performed as described (25)  for assessment of DNA methylation status.  

DNA (1.0 µg) was digested using the methylation-sensitive restriction enzymes HpaII and 

BssHII (New England Biolabs) for determination of global and CpG island methylation, 

respectively.  For the cytosine extension assay, a reaction mixture of the DNA digest, 10X 

PCR Buffer II (without MgCl2), 25 mmol/L MgCl2, 0.5 U Amplitaq DNA Polymerase (Applied 

Biosystems), and [3H]-dCTP was incubated at 55˚C for 1 h.  Following incubation, samples 

were applied to Whatman DE-81 ion exchange filter paper and washed in 0.5 mol/L sodium 

phosphate buffer (pH 7.0) three times, dried, and 3H incorporation was assessed using liquid 

scintillation counting. 

 

DNMT1 abundance  The Western blotting procedure described for GNMT and CBS was 

also used to determine the DNMT1 abundance, with the following modifications.  For 

DNMT1, the primary and secondary antibodies used were goat polyclonal anti-DNMT and 

donkey anti-goat, respectively.   

 

Statistical analysis  For each timepoint, the mean values of each treatment group were 

subjected to a Student’s t test (SigmaStat, SPSS, Chicago, IL).  A Mann-Whitney rank sum 

test was used when variances were unequal.  Correlations were determined using the 

Pearson product moment correlation method.  Differences were considered significant at P 

< 0.05. 
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Results  

Methyl group metabolism is perturbed by diabetes 

Blood glucose levels were greater in diabetic rats than control rats at all timepoints 

(72, 151, and 185% greater than control at wk 2, 4, and 8, respectively, Table 1).  Plasma 

homocysteine levels were lower in the diabetic group at all timepoints. (76, 65, and 53% of 

control at wk 2, 4, and 8, respectively, Table 1 ). 

 

Table 1.  Circulating concentrations of glucose and homocysteine in control and diabetic rats.1 

        Time,wk      

    2   4   8 

Blood glucose  mmol/L 

Control 12.2 ± 0.3 9.7 ± 0.5 9.8 ± 0.7 

Diabetic 21.0 ± 1.7* 24.4 ± 2.8* 27.9 ± 1.1* 

Plasma 

homocysteine µmol/L 

Control 9.1 ± 0.3 10.0 ± 2.0 7.4 ± 0.8 

Diabetic 2.2 ± 0.2* 3.5 ± 0.5* 3.5 ± 0.6* 

              

1 Values are mean ± SEM (n= 4-5).  *Different from control at a given timepoint,  

P < 0.05.   
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Consistent with earlier short-term studies (7,8,10), remethylation, by both folate-

dependent and –independent pathways, was also altered by a chronic diabetic state.  At 8 

wk, hepatic BHMT activity was elevated (95%) and hepatic activity of MS was markedly 

lower (81%) in diabetic rats compared to controls (Table 2).  In the kidney, BHMT activity 

was greater in diabetic rats than controls, but there was no significant change in MS activity.  

It should be noted that renal BHMT activity level in both control and diabetic rats was very 

low and thus the metabolic consequences of this increase may be minimal.   

There was a sustained increase in hepatic CBS abundance in the diabetic rat, with 

an increase of 35% at 8 wk (Fig. 1 ).  In contrast, renal CBS abundance was decreased 33% 

at 8 wk in the diabetic group compared to controls, which would also be expected to 

 

 

Table 2.  Hepatic and renal remethylation enzyme activity levels in control and diabetic rats at 

8 wk after induction of diabetes.1 

     Control    Diabetic    P-value  

     BHMT Activity   nmol Met/(h • mg protein)  

  Hepatic  
 

73 ± 10 
 

142 ± 16 
 

0.006 

Renal  
 

0.3 ± 0.1 
 

1.1 ± 0.1 
 

<0.001  

MS Activity   pmol/(min • mg protein)  

  Hepatic  
 

24.0 ± 2.9 
 

4.5 ± 1.6 
 

<0.001  

Renal  
 

209 ± 28  
 

148 ± 24  
 

0.149 

              

1 Values are mean ± SEM, (n = 4-5).   
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contribute to a sparing of methyl groups in the kidney by reducing the catabolism of 

homocysteine.  For both tissues, similar changes were also found in diabetic rats at 2 and 4 

wk (data not shown), consistent with previous short term studies (7,11,12).  

The activity and/or abundance of the SAM-dependent methyltransferases (i.e. 

PEMT, GNMT) assessed were elevated as a result of a diabetic condition.    Hepatic PEMT 

activity was elevated 31% at 8 wk (diabetic vs. control, 232 ± 9 vs. 177 ± 13 pmol/(min • mg 

protein), P = 0.012), which is similar to results from an acute (1 wk) study in diabetic rats (6). 

The activity and abundance of hepatic GNMT were greater in the liver of the diabetic 

rat compared with control values at all timepoints (Fig. 2A ), although the magnitude was 

diminished with time.  The temporal pattern of GNMT induction by diabetes was tissue- 
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Figure 1.   Hepatic and renal cystathionine β-synthase (CBS) abundance in control and 

diabetic rats at 8 wk after induction of diabetes.  Values are mean ± SEM, (n= 4-5).  

*Different from control, P < 0.05.  A representative blot is shown.   
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specific.  Renal GNMT activity was elevated at 2 and 4 wk in diabetic rats, but was not 

different from control values at 8 wk (Fig. 2B ).  Likewise, renal GNMT abundance was only 

greater at the 2 wk timepoint in diabetic rats. 

 

DNA methylation status is affected by a diabetic condition in the liver, but not the 

kidney 

DNMT1 protein abundance and SAM and SAH concentrations in the liver, as well as 

hepatic and renal global and CpG island methylation status were assessed as indicators of 

methyl group balance.  There was no difference in hepatic SAH concentrations, but both 

hepatic SAM levels and the SAM:SAH ratios were slightly lower in diabetic rat liver 

compared to the control; however, this was not statistically significant (Table 3).   However, 

hepatic DNMT1 abundance was 45% greater in diabetic rats than in controls at 8 wk (Table 

3).   

DNA methylation status was assessed using the cytosine extension DNA methylation 

assay (25), wherein endogenous DNA hypomethylation is indicated by an increase in [3H]-

dCTP incorporation.  For liver, there was no significant difference in genomic DNA 

methylation between control and diabetic rats at 2 wk.  However, there was a trend toward 

greater [3H]-dCTP incorporation in diabetic rats at 4 wk (P = 0.074), and a significant 

increase  of 70% in diabetic rats compared to controls at 8 wk (Fig. 3 , P = 0.004).  Hepatic 

CpG island DNA was hypomethylated in diabetic rats at 2 wk; however, there were no 

differences in CpG island methylation status at 4 or 8 wk (Appendix A ).  Interestingly, there 

was a strong positive correlation between the induction of hepatic GNMT activity and the 

degree of CpG methylation in the liver for all timepoints combined (n = 29, r = 0.74, P < 

0.01).  In marked contrast to hepatic tissue, there were no differences in renal DNA 

methylation status at any timepoint.  Taken together, this data suggests that perturbations of 

hepatic methyl group metabolism by a diabetic condition were sustained through 8 wk, with 

subsequent alterations of DNA methylation status and elevated DNMT1 abundance, 

whereas the kidney appears to be less sensitive. 
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Figure 2.  Hepatic GNMT activity and abundance in the liver (A) and kidney (B) of control 

and diabetic rats at 2, 4, and 8 wk after induction of diabetes.  Values are mean ± SEM (n= 

4-5).  *Different from control at a given timepoint, P < 0.05. 
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Table 3.  SAM and SAH concentrations and DNMT1 abundance in the liver of type 1 

diabetic male rats at 8 wk. 

      Control  
 

Diabetic    

  SAM 28.0 ± 4.5 22.3 ± 5.8 

nmol/g liver 

 SAH 4.8 ± 0.5 5.5 ± 0.8 

nmol/g liver 

 SAM:SAH  6.4 ± 1.4 4.6 ± 1.4 

 
 DNMT1 abundance  1.00 ± 0.16 1.46 ± 0.05* 

Fold of control 

1 Values are mean ± SEM, (n = 4-5).  *Different from control, P < 0.05.   

 

Discussion   

Diabetes and its progression have been shown to be associated with secondary 

pathologies, including both micro- and macrovascular complications (26).  Based on our 

previous acute diabetes studies that indicated aberrant methyl group metabolism in the liver 

(6-8), we postulated here that a chronic diabetic condition would ultimately result in more 

overt methyl group deficiency.  Ultimately, this would be expected to compromise important 

SAM-dependent transmethylation reactions, such as the methylation of DNA.  Indeed, global 

DNA hypomethylation was observed in the rat liver 8 wk after the induction of diabetes.  To 

our knowledge, this is the first report demonstrating an association between diabetes and 

genome-wide epigenetic alterations of DNA.  This finding may have significant implications 

for mechanistically linking diabetes to complications that are known to be influenced by DNA 
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Figure 3.  Genomic DNA methylation in the liver of control and diabetic rats at 2, 4, and 8 

wk after induction of diabetes.  Greater incorporation of [3H]-dCTP indicates a greater 

degree of endogenous hypomethylation.  Values are mean ± SEM (n= 4-5).  *Different from 

control at a given timepoint, P < 0.05.  

 

methylation and aberrant gene expression, such as cardiovascular disease and cancer (27-

29). 

In this study, plasma homocysteine concentrations in diabetic rats were lower than 

those in the controls throughout the treatment period.  This finding is consistent with an 

earlier report which has shown that 10 wk after induction of diabetes, plasma homocysteine 

levels remained lower in diabetic rats than controls despite the onset of early renal 

dysfunction as evidenced by elevated urinary protein (30).  Here, using plasma creatinine as 

an estimate of the glomerular filtration rate (GFR), diabetic hyperfiltration was present as 
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evidenced by lower plasma creatinine levels (Appendix A ).  Typically, plasma 

homocysteine levels are inversely related to the GFR; thus, during the hyperfiltration that 

occurs in early diabetes in both humans and animal models, hypohomocysteinemia is 

observed (31-33).  However, there was not a significant correlation between plasma 

homocysteine and creatinine concentrations (r = 0.279, P = 0.15), suggesting that greater 

excretion of homocysteine due to hyperfiltration is not the only determinant of circulating 

homocysteine concentrations.  This conclusion was also supported by the multivariate 

analysis of Wollesen et al (33). 

Given the role of the kidney in homocysteine balance (13,14,31), it was of interest to 

determine the effects of a diabetic condition in both the liver and the kidney.  Hepatic 

perturbations of methyl group metabolism were sustained throughout the duration of the 

study, whereas the alterations in renal methyl group metabolism were more transient and no 

change in DNA methylation was observed.  In support of this finding, genomic 

hypomethylation has been observed in the liver, but not the kidney, of rats fed a methyl-

deficient diet (34).  Dietary-induced methyl deficiency is characterized by: genomic and 

regional hypomethylation; perturbed expression of DNA methyltransferases and methyl-

binding proteins; aberrant histone modifications; uracil misincorporation; and DNA strand 

breaks (15,34-37).  All of these alterations contribute to genomic instability and thus play an 

important role in carcinogenesis.  Induction of DNMT1 is characteristic of dietary-induced 

methyl deficiency (15,37) and was also observed in our diabetic rats at wk 8 in this 

experiment.   

The results presented here suggest that alterations of methyl group metabolism were 

sustained in the liver, whereas the kidney was less sensitive to such changes.  Despite 

differences in the pathology of type 1 vs. type 2 diabetes, the characteristic changes in 

methyl group metabolism appear to be similar for both conditions.  The increases in hepatic 

GNMT, PEMT, BHMT, and CBS activity and/or abundance, as well as the decrease in 

hepatic MS activity has been previously described in acute models of type 1 and/or 2 

diabetes (6-12).  The data presented here suggests that these hepatic effects are sustained 

for at least 8 wk.  However, in the kidney there was only transient induction of GNMT, a 

decrease in CBS abundance, and no difference in either MS activity or DNA methylation 

status.  Taken together, the diabetic rat model shows similarities to methyl-deficient rat 

model, such that hepatic methyl group and methionine metabolism is perturbed for at least 8 
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wk, resulting in genomic hypomethylation and aberrant expression of DNMT1.  Moreover, 

these effects are clearly tissue-specific. 

The changes induced by a diabetic condition could have secondary consequences, 

particularly based on the collective changes in GNMT and DNA methylation.  GNMT is 

multifunctional and in diabetes it may be upregulated to generate pyruvate from methionine 

for gluconeogenesis, especially as its expression is limited to gluconeogenic tissues (38); it 

is also a proposed regulator of the SAM:SAH ratio (39).  Thus, upregulation of GNMT in 

diabetes would be expected to decrease the SAM:SAH ratio, thus limiting the intracellular 

transmethylation potential and numerous transmethylation reactions, including DNA 

methylation.  Although the hepatic SAM:SAH in diabetic rats in this study was not 

significantly different, DNA hypomethylation was clearly evident.  For liver, dietary methyl 

deficiency is an independent carcinogen and has long been known to cause 

hypomethylation in the promoter regions of oncogenes (40,41).  With the functional methyl 

deficiency associated with a diabetic condition, it would be expected that diabetes may also 

be associated with increased risk of hepatocellular carcinoma.  This is supported by several 

epidemiological studies examining the relationship between diabetes and cancer have found 

an increased  incidence of liver cancers of both type 1 and/or type 2 diabetic patients (42-

45).  In addition to hepatic carcinogenesis, hypomethylation of DNA and alterations of 

methyl group metabolism have also been implicated in the development of vascular 

diseases.  Global DNA hypomethylation has been observed in advanced atherosclerosis in 

the rabbit and mouse, as well as in humans (27,28).  Aberrant DNA methylation patterns 

have been detected early in the development of the disease (46) and become more 

prevalent with the progression of atherosclerosis, thus suggesting that epigenetic 

mechanisms may play a critical role in the atherosclerotic pathogenesis.  It remains to be 

determined if diabetes-induced changes in DNA methylation are linked to cardiovascular 

disease.  

Regulation of specific enzymes of methyl group metabolism may also impact DNA 

methylation status and pathogenesis of disease.  Deficiency of MS or MTHFR were both 

reported to have negative effects on cerebral vascular function and lipid deposition was 

found in the aorta of mice hetero- or homozygous for the MTHFR knockout (47,48).  Both 

MTHFR mutants also had lower SAM:SAH ratios and regions of both DNA hypomethylation 

in several tissues, suggesting impaired methylation capacity (48).  GNMT is proposed to be 
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the primary regulator of methyl group supply and utilization and thus, aberrant regulation of 

GNMT activity might be expected to perturb DNA methylation status.  A recent report by 

Martinez-Chantar et al (49) demonstrates that in GNMT-knockout mice methylation status of 

specific genes was increased.  We found a similar relationship in the diabetic rat liver, such 

that lower levels of GNMT activity were correlated with a greater degree of CpG island 

methylation and upregulation of GNMT was associated with hypomethylation.  It would 

appear that decreasing GNMT activity was associated with the silencing of genes, whereas 

increasing GNMT activity would favor the activation of genes.  

DNA methylation has also been closely linked to patterns of histone methylation and 

other histone modifications which could also contribute to aberrant gene expression and 

development of disease (29).  Recently it was reported that in lymphocytes cultured under 

high glucose, methylation patterns of histones were altered in the regions of several genes 

which may be associated with diabetes via signal transduction, transporter, inflammation, 

and oxidant stress pathways (50).  Mechanistically, evidence suggests that aberrant 

expression of methyl-binding proteins, histone methyltransferases and histone acetylases 

are also involved (15,37,50). 

In summary, we have shown for the first time that chronic alterations of methyl group 

metabolism concomitant with genomic hypomethylation in the rat liver as a result of type 1 

diabetes.  In contrast, the kidney was more resistant to perturbations of methyl group 

metabolism and no changes were found in renal DNA methylation.  The identification of 

widespread genomic DNA hypomethylation is a particularly novel finding and supports our 

hypothesis that a functional methyl deficiency develops in a diabetic state and may have 

implications concerning gene expression, DNA stability, and the development of secondary 

complications, such as vascular diseases and tissue-specific carcinogenesis.  Because 

regulation of GNMT appears to be a major determinant of DNA hypomethylation, it is of 

interest to note that the tissues shown to be susceptible to cancer development in diabetes 

(42-45) are the same tissues that are known to express GNMT (38).  Future research efforts 

will be geared towards further characterizing these metabolic and epigenetic alterations to 

gain a better understanding of the consequences of these changes and identifying timely 

dietary interventions that might be successful in ameliorating negative effects. 

 



www.manaraa.com

 

77 

 

Literature Cited  

1. Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for 
occlusive vascular disease. Annu Rev Nutr. 1992;12:279-98.   

2. Newberne PM, Rogers AE. Labile methyl groups and the promotion of cancer. Annu 
Rev Nutr. 1986;6:407-32. 

3. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and 
neurodegenerative disorders. Trends Neurosci. 2003;26:137-46. 

4. Scott JM, Kirke PN, Weir DG. The role of nutrition in neural tube defects. Annu Rev 
Nutr. 1990;10:277-95. 

5. Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL. Is it time to reevaluate 
methyl balance in humans? Am J Clin Nutr. 2006;83:5-10. 

6. Hartz CS, Nieman KM, Jacobs RL, Vance DE, Schalinske KL. Hepatic 
phosphatidylethanolamine N-methyltransferase expression is increased in diabetic 
rats. J Nutr. 2006;136 3005-9. 

7. Nieman KM, Rowling MJ, Garrow TA, Schalinske, KL. Modulation of methyl group 
metabolism by streptozotocin-induced diabetes and all-trans-retinoic acid. J Biol 
Chem. 2004;279:45708-12.  

8. Nieman KM, Hartz CS, Szegedi SS, Garrow TA, Sparks JD, Schalinske KL. Folate 
status modulates the induction of hepatic glycine N-methyltransferase and 
homocysteine metabolism in rats. Am J Physiol Endocrinol Metab. 2006;291:E1235-
42. 

9. Wijekoon EP, Hall B, Ratnam S, Brosnan ME, Zeisel SH, Brosnan JT. Homocysteine 
metabolism in ZDF (type 2) diabetic rats. Diabetes. 2005;54:3245-51. 

10. Ratnam S, Wijekoon EP, Hall B, Garrow TA, Brosnan ME, Brosnan JT. Effects of 
diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat 
liver. Am J Physiol Endocrinol Metab. 2006;290:E933-9. 

11. Jacobs RL, House JD, Brosnan ME, Brosnan JT. Effects of streptozotocin-induced 
diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes. 
1998;47:1967-70. 

12. Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT. Hormonal 
regulation of cystathionine beta-synthase expression in liver. J Biol Chem. 
2002;277:42912-8. 

13. Poirier LA, Brown AT, Fink LM, Wise CK, Randolph CJ, Delongchamp RR, Fonseca 
VA. Blood S-adenosylmethionine concentrations and lymphocyte 
methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic 
nephropathy. Metabolism. 2001;50:1014-8. 

14. Tessari P, Coracina A, Kiwanuka E, Vedovato M, Vettore M, Valerio A, Zaramella M, 
Garibotto G. Effects of insulin on methionine and homocysteine kinetics in type 2 
diabetes with nephropathy. Diabetes. 2005;54:2968-76. 

15. Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, Huang Y, Young D, Jacob 
ST. A folate- and methyl-deficient diet alters the expression of DNA 



www.manaraa.com

 

78 

 

methyltransferases and methyl CpG binding proteins involved in epigenetic gene 
silencing in livers of F344 rats. J Nutr. 2006;136:1522-7. 

16. Liu HH, Chen KH, Shih YP, Lui WY, Wong FH, Chen, YMA. Characterization of 
reduced expression of glycine N-methyltransferase in cancerous hepatic tissues 
using two newly developed monoclonal antibodies. J Biomed Sci. 2003;10:87–97. 

17. Rowling MJ, Schalinske KL. Retinoid compounds activate and induce hepatic glycine 
N-methyltransferase in rats. J Nutr. 2001;131:1914-7. 

18. Cook RJ, Wagner C. Glycine N-methyltransferase is a folate binding protein of rat 
liver cytosol. Proc Natl Acad Sci U S A. 1984;81:3631-4. 

19. Duce AM, Ortiz P, Cabrero C, Mato JM. S-adenosyl-L-methionine synthetase and 
phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology 
1988;8:65-8. 

20. Garrow TA. Purification, kinetic properties, and cDNA cloning of mammalian betaine-
homocysteine methyltransferase. J Biol Chem. 1996;271:22831-8. 

21. Keating JN, Weir PG, Scott JM. Demonstration of methionine synthetase in intestinal 
mucosal cells of the rat. Clin Sci (Lond). 1985;69:287-92. 

22. Tanghe KA, Garrow TA, Schalinske KL. Triiodothyronine treatment attenuates the 
induction of hepatic glycine N-methyltransferase by retinoic acid and elevates 
plasma homocysteine concentrations in rats. J Nutr. 2004;134:2913-8. 

23. Ubbink JB, Hayward Vermaak WJ, Bissbort S. Rapid high-performance liquid 
chromatographic assay for total homocysteine levels in human serum. J Chromotogr. 
1991;565:441-6. 

24. Fell D, Benjamin LE, Steele RD. Determination of adenosine and S-adenosyl 
derivatives of sulfur amino acids in rat liver by high-performance liquid 
chromatography. J Chromatogr. 1985;345:150-6. 

25. Pogribny I, Yi P, James SJ. A sensitive new method for rapid detection of abnormal 
methylation patterns in global DNA and within CpG islands. Biochem Biophys Res 
Comm. 1999;262:624-8. 

26. Milicevic Z, Raz I, Beattie SD, Campaigne BN, Sarwat S, Gromniak E, Kowalska I 
Galic E, Tan M, Hanefeld M. Natural history of cardiovascular disease in patients 
with diabetes: role of hyperglycemia. Diabetes Care. 2008;31:S155-60. 

27. Hiltunen MO, Ylä-Herttuala S. DNA methylation, smooth muscle cells, and 
atherogenesis. Arterioscler Thromb Vasc Biol. 2003;23:1750-3. 

28. Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in 
atherosclerosis: more than just hyperhomocysteinemia? J Nutr. 2005;135:5-8. 

29. Ballestar E, Esteller M. Methyl-CpG-binding proteins in cancer: blaming the DNA 
methylation messenger. Biochem Cell Biol. 2005;83:374-84. 

30. Unlüçerçi Y, Bekpinar S, Gürdöl F, Seferoğlu G. A study on the relationship between 
homocysteine and diabetic nephropathy in rats. Pharmacol Res. 2002;45:249-52. 

31. Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH. The kidney and 
homocysteine metabolism. J Am Soc Nephrol. 2001;12:2181-9. 



www.manaraa.com

 

79 

 

32. Premaratne E, Macisaac RJ, Tsalamandris C, Panagiotopoulos S, Smith T, Jerums 
G. Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular 
filtration rate. Diabetologia. 2005;48:2486-93. 

33. Wollesen F, Brattström L, Refsum H, Ueland PM, Bergland L, Berne C. Plasma total 
homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. 
Kidney Int. 1999;55:1028-35. 

34. Pogribny IP, James SJ, Jernigan S, Pogribna M. Genomic hypomethylation is 
specific for preneoplastic liver in folate/methyl deficient rats and does not occur in 
non-target tissues. Mutat Res. 2004;133:S3740-7. 

35. James SJ, Pogribny IP, Pogribna M, Miller BJ, Jernigan S, Melnyk S. Mechanisms of 
DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-
deficient rat model of hepatocarcinogenesis. J Nutr. 2003;133:S3741-7. 

36. Pogribny IP, Tryndyak VP, Muskhelishvili L, Rusyn I, Ross SA. Methyl deficiency, 
alterations in global histone modifications, and carcinogenesis. J Nutr. 
2007;137:S216-22. 

37. Lopatina NG, Vanyushin BF, Cronin GM, Poirier LA. Elevated expression and altered 
pattern of activity of DNA methyltransferase in liver tumors of rats fed methyl-
deficient diets. Carcinogenesis. 1998;19:1777-81. 

38. Yeo EJ, Wagner C. Tissue distribution of glycine N-methyltransferase, a major folate-
binding protein of liver. Proc Natl Acad Sci USA. 1994;91:210-4. 

39. Kerr SJ. Competing methyltransferase systems. J Biol Chem. 1972;247:4248-52. 
40. Bhave MR, Wilson MJ, Poirier LA. c-H-ras and c-K-ras gene hypomethylation in the 

livers and hepatomas of rats fed methyl-deficient, amino acid-defined diets. 
Carcinogenesis. 1988;9:343-8. 

41. Zapisek WF, Cronin GM, Lyn-Cook BD, Poirier LA. The onset of oncogene 
hypomethylation in the livers of rats fed methyl-deficient, amino acid-defined diets. 
Carcinogenesis. 1992;13:1869-72. 

42. Batty GD, Shipley MJ, Marmot M, Smith GD. Diabetes status and post-load plasma 
glucose concentration in relation to site-specific mortality: findings from the original 
Whitehall study. Cancer Causes Control. 2004;15:873-81. 

43. Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a 
predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol. 
2004;159:1160-7. 

44. Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, Beasley P, Patt 
YZ. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral 
hepatitis and diabetes mellitus. Hepatology. 2002;36:1206-13. 

45. Rousseau MC, Parent ME, Pollak MN, Siemiatycki J. Diabetes mellitus and cancer 
risk in a population-based case-control study among men from Montreal, Canada. Int 
J Cancer. 2006;118:2105-9.   

46. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, 
Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign 
of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147-54. 



www.manaraa.com

 

80 

 

47. Dayal S, Devlin AM, McCaw RB, Liu ML, Aming E, Bottiglieri T, Shane B, Faraci FM, 
Lentz SR. Cerebral vascular dysfunction in methionine synthase-deficient mice. 
Circulation. 2005;112:737-44. 

48. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen 
MF, Pai A, John SW et al. Mice deficient in methylenetetrahydrofolate reductase 
exhibit hyperhomocysteinemia and decreased methylation capacity, with 
neuropathology and aortic lipid deposition. Hum Mol Genet. 2001;10:433-43. 

49. Martinez-Chantar ML, Vázquez-Chantada M, Ariz U, Martinez N, Varela M, Luka Z, 
Capdevila A, Rodriguez J, Aransay AM et al. Loss of the glycine N-methyltransferase 
gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology. 
2008;47:1191-9. 

50. Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R. Genome-wide analysis of 
histone lysine methylation variations caused by diabetic conditions in human 
monocytes. J Biol Chem. 2007;282:13854-63. 

 

  



www.manaraa.com

 

81 

 

CHAPTER 5:  Tissue-specific alterations of methyl g roup metabolism and DNA 

hypermethylation in the Zucker (type 2) diabetic fa tty (ZDF) rat 
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Metabolism 
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Abstract 

Altered methyl group and homocysteine metabolism was tissue-specific, non-

transient, and preceded hepatic DNA hypomethylation in streptozotocin (STZ)-induced type 

1 diabetic rats.   Similar perturbations of hepatic methyl group and homocysteine 

metabolism have been shown in the Zucker (type 2) diabetic fatty (ZDF) rat in the pre- and 

early diabetic stages, but the tissue specificity and effect on epigenetic regulation are 

unknown, particularly with respect to disease progression.  With this objective in mind, ZDF 

and lean rats (ZDF/Gmi fa/fa and +/?) were euthanized at 12 and 21 wk of age, representing 

early and advanced diabetic conditions.  At 12 wk, hepatic glycine N-methyltransferase 

(GNMT), methionine synthase, and cystathionine β-synthase (CBS) activity and/or 

abundance were increased, whereas plasma homocysteine was decreased in ZDF rats.  At 

21 wk, GNMT activity was increased in liver and kidney.  In liver only, there was a trend 

toward increased CBS protein abundance (78%) and betaine-homocysteine S-

methyltransferase mRNA expression (~100%).  Phosphatidylethanolamine N-

methyltransferase activity tended to be lower in ZDF liver despite a significant increase in 

mRNA abundance.  Homocysteine levels were decreased in plasma and kidney, but not in 

liver, at 12 and 21 wk.  In contrast to the hypomethylation observed in the STZ-diabetic rat 

liver, hepatic genomic DNA was hypermethylated at 12 and 21 wk in ZDF rats, concurrent 

with a trend toward increased DNMT1 mRNA expression (p = 0.08) at 21 wk.  In conclusion, 

the progression of type 2 diabetes in the ZDF rat was associated with tissue- and disease 

stage-specific aberrations of methyl group and homocysteine metabolism, with persistent 

hepatic global DNA hypermethylation. 
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Introduction  

It is estimated that over 12% of the U.S. population is afflicted with diabetes, with 

type 2 diabetes representing 95% of cases (1).  Diabetes has been identified as a condition 

that can profoundly alter methyl group and homocysteine metabolism (2,3).  There are three 

primary pathways involved in homocysteine metabolism: transmethylation, remethylation via 

folate/B12-dependent or –independent means, and transsulfuration (Figure 1 ). For 

transmethylation reactions, methionine is activated to S-adenosylmethionine (SAM), which 

serves as the universal methyl group donor for numerous methyltransferases, resulting in 

the methylation of substrates such as nucleic acids, lipids, and proteins.  Methyltransferase 

reactions result in the generation of homocysteine, which can be remethylated back to 

methionine using methyl groups donated by either 5-methyltetrahydrofolate (5-CH3-THF) or 

betaine.  For folate-dependent remethylation, the B12-dependent enzyme methionine 

synthase (MS) utilizes a methyl group from 5-CH3-THF.  Betaine-homocysteine S-

methyltransferase (BHMT) catalyzes the folate-independent remethylation of homocysteine 

using betaine, a methyl group donor derived from choline oxidation.  Alternatively, 

homocysteine can be catabolized through the transsulfuration pathway to cysteine, 

beginning with the irreversible conversion to cystathionine by cystathionine β-synthase 

(CBS).    

We, and others, have previously shown that an early diabetic condition alters methyl 

group and homocysteine metabolism.  Diabetes induced hepatic protein abundance and 

activity of glycine N-methyltransferase (GNMT) and phosphatidylethanolamine N-

methyltransferase (PEMT, 4-9).  Both enzymes have important roles in regulation of methyl 

groups and homocysteine: GNMT is proposed to be a regulator of the transmethylation 

potential via maintenance of the SAM:S-adenosylhomocysteine (SAH) ratio,  PEMT is 

purported to be the greatest consumer of SAM-derived methyl groups (10) and catalyzes the 

sequential trimethylation of phosphatidylethanolamine to phosphatidylcholine.  Induction of 

BHMT and CBS are also consistently observed in diabetic or glucocorticoid-treated 

conditions (4,5,7-9,11,12), whereas the effect of diabetes on MS is not consistent.  In sum, 

these metabolic alterations result in hypohomocysteinemia in the early diabetic condition, 

likely owing in part to greater upregulation of transsulfuration and remethylation via BHMT 

such that it overwhelms increases in transmethylation.  Importantly, similar aberrations are  
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diabetic rat, we noted that the effect of diabetes was tissue-specific and sustained 

alterations of hepatic methyl group and homocysteine metabolism appeared to lead to a 

methyl deficient condition, as evidenced by genomic DNA hypomethylation in the liver (7).   

 The progression of type 2 diabetes from prediabetes to the early diabetic state in the 

Zucker (type 2) diabetic fatty (ZDF) rat has been shown nicely by Wijekoon et al. (9), 

however the advanced diabetic condition has yet to be fully characterized.  Poirier et al (14) 

reported no differences between the type 1 and type 2 patients within their study, and the 

SAM:SAH ratio decreased with increasing severity of disease.  Therefore, we hypothesized 

that ZDF rats with advanced diabetes would have perturbed methyl group and 

homocysteine metabolism, including chronic upregulation of GNMT, and develop a methyl-

deficient condition.  Furthermore, due to the functional methyl deficiency, the animals would 

have abnormal DNA methylation and expression of epigenetic regulatory proteins, similar to 

that observed in the STZ-diabetic rat (7) or rats fed methyl-deficient diets (16).  

    

Materials and Methods 

Chemicals and reagents  Reagents were obtained as follows:  3T3 fully methylated DNA, 

BssHII, HpaII, and MspI restriction enzymes, New England Biolabs, Inc. (Ipswich, MA); 5-

[3H]-dCTP, MP Biomedicals (Solon, OH); enhanced chemiluminescence Western blotting 

detection reagents and 5-[14C]-methyl-THF, Amersham/GE Healthcare (Piscataway, NJ); 

CBS antibody (H-300, sc-67154), goat anti-rabbit and goat anti-chicken horseradish 

peroxidase secondary antibodies, Santa Cruz Biotechnology, Inc (Santa Cruz, CA); and S-

adenosyl-L-[3H]-methionine, Perkin Elmer Life Sciences (Waltham, MA).  All other reagents 

were of analytical grade. 

Animals  All animal protocols were approved by and conducted in accordance with the 

guidelines set forth by the Iowa State University Institutional Animal Care and Use 

Committee.  The first set of experiments utilized rats which were purchased at 11 wk of age, 

allowed to acclimate for 1 wk, and terminated at 12 wk of age.  For the second study, rats 

were purchased at 10 wk of age and sacrificed at 21 wk of age.  Each study utilized six lean 

(ZDF/Gmi +/?) and six ZDF (ZDF/Gmi fa/fa) rats (Charles River Laboratories, Wilmington, 

MA) kept in individual cages with a 12:12 hr light:dark cycle and given ad libitum access to 
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water and Purina 5008 diet.  Animals were fasted for 12 hr prior to euthanasia.  Rats were 

anesthetized by intraperitoneal injection with ketamine and xylazine (90 and 10 mg/kg 

respectively).  Blood samples were then collected by cardiac puncture and tissues were 

collected including the liver, right kidney, and heart.  Blood glucose levels were immediately 

assessed using a glucometer.  Plasma and serum samples were collected by standard 

centrifugation methods and stored at -20°C.  Serum insu lin levels were analyzed by 

Rat/Mouse Insulin ELISA Kit (Linco, Inc., St Charles, MO).   A portion of the liver was 

immediately homogenized and cytosolic extracts prepared as previously described (7); the 

remainder of the liver and all other tissues were snap frozen in liquid nitrogen and 

subsequently stored at -70°C.  Protein concentrations of extracts were determined using the 

Bradford assay with Coomassie Protein Plus Reagent (Thermo Scientific). 

 

Enzyme assays  Activities of GNMT, PEMT, and MS were determined using radioisotopic 

assays as previously described (5,6,7,17,18).  Briefly, GNMT and MS activity in the liver, 

kidney, and heart were determined by incubation of cytosolic extracts with reaction mixes 

containing S-adenosyl-L-[3H]-methionine and 5-[14C]-methyl-THF, respectively.  After halting 

the reaction, the unreacted, radiolabeled substrate was removed via sequestration by 

activated charcoal or anion exchange resin.  Hepatic PEMT activity in microsomal extracts 

was assessed in a similar manner by determining the incorporation of S-adenosyl- L-[3H]-

methionine into the lipid fraction by the enzyme in microsomal extracts.  Liquid scintillation 

counting was used to determine the extent of radiolabel incorporation for all assays. 

 

Western blotting  Relative protein abundance was determined using methods previously 

described (7) with minor modifications.  All proteins were separated using SDS-PAGE.  

Ponceau S staining was used to verify equal loading. For assessment of GNMT, blots were 

incubated with a newly-procured affinity-purified chicken antibody   (Aves Labs, Inc., Tigard, 

OR) directed against the following peptide sequence: KER WNR RKE PAF DK (GNMT 

residues #97-110), 1:40000 in TTBS/1% BSA. CBS primary antibody was prepared 1:400 in 

TTBS/1% BSA; goat anti-chicken or anti-rabbit horseradish peroxidase secondary 

antibodies were prepared at 1:5000 in TTBS.  Relative protein amounts were quantified by 

densitometric analysis with QuantityOne software (Bio-Rad Laboratories, Hercules, CA).  
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DNA methylation  Using the method of Pogribny et al (19) and as described previously (7), 

digestion of DNA followed by cytosine extension was used for assessment of DNA 

methylation status in liver, kidney, and heart tissues.  Global and CpG island DNA 

methylation were determined by digesting 1.0 µg DNA from the liver, kidney, or heart using 

the methylation-sensitive restriction enzymes HpaII and BssHII, respectively.  For the 

cytosine extension assay, a reaction mixture of the DNA digest, 10X PCR Buffer II (without 

MgCl2), 25 mmol/L MgCl2, 0.5 U Amplitaq DNA Polymerase (Applied Biosystems), and [3H]-

dCTP was incubated at 55˚C for 1 h.  Following incubation, samples were applied to 

Whatman DE-81 ion exchange filter paper and washed in 0.5 mol/L sodium phosphate 

buffer (pH 7.0) three times, dried, and 3H incorporation was assessed using liquid 

scintillation counting.  Samples were run in duplicate and reactions using either MspI-

digested DNA or mouse 3T3 fully-methylated DNA with the appropriate restriction enzyme 

were used as controls.  When compared to the MspI control, the degree of genomic 

methylation fell within the expected range of 70-90% (20).  

 

Real-time RT-PCR  Upon the first removal from storage, 0.1 g of frozen liver was taken and 

immediately preserved in 1 mL RNALater-ICE (Ambion, Inc, Austin, TX).  This sample was 

subsequently used for RNA isolation using Trizol Reagent (Invitrogen, Carlsbad, CA).  The 

reverse-transcription assay was performed using iScript Select cDNA Synthesis Kit (Bio-Rad 

Laboratories, Hercules, CA).  The resulting cDNA was diluted 50x for use in the PCR 

reaction with iQ SYBR Green Supermix (Bio-Rad Laboratories).  Primers used for RT-PCR 

(Table 1 ) were designed using PrimerQuest (Integrated DNA Technologies, Inc., Coralville, 

IA).   Samples were run in duplicate, data were normalized to 18S control, and results were 

analyzed using the comparative Ct method.   

 

Statistical analysis  For each timepoint, the mean values of each treatment group were 

subjected to a Student’s t test (SigmaStat, SPSS, Chicago, IL).  A Mann-Whitney rank sum 

test was used when normality or equal variance test failed.  Differences were considered 

significant at P < 0.05, trends were noted when 0.05 < P < 0.1. 
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Table 1. Real-time RT-PCR primers 

Target   Primers (5' → 3') 

GNMT F*: ACA ACA AAG CCC ACA TGG TAA CCC 

  
R: AGC CGA AAC TTA CTG AAG CCA GGA 

PEMT F: TGT GCT CTC CAG CTT CTA TGC ACT 
  R: AGG GAA ATG TGG TCA CTC TGG ACT 

MS F: TTG GCC TAC CGG ATG AAC AAA TGC 
  R: AGC CAC AAA CCT CTT GAC TCC TGT 

BHMT F: ATC TGG GCA GAA GGT CAA TGA AGC 
  R: TGA CTC ACA CCT CCT GCA ACC AAT  

CBS F: AAC ATG TTG TCC TCC CTG CTT GCT 
  R: TCG GCT TGA ACT GCT TGT AGA GGA 

DNMT1 F: TGT GGC AAG AAG AAA GGT GGC AAG  
  R: TGG ATG GAC TTG TGG GTG TTC TCA  

DNMT3a F: AGA GTG TCT GGA ACA CGG CAG AAT  
  R: TGC TGG TCT TTG CCC TGC TTT ATG 

DNMT3b F: TGC GCC TGC AAG ACT TCT TCA CTA  
  R: TGC AGG AAT CGC TGG GTA CAA CTT  

MBD1 F: CCT GCA CCT TTG TGC TGT GAG AAT  
  R: CAG TCT TTG CAC AAT GTC CTG CGT  

MBD2 F: TCA GAA GTA AAC CAC AGC TGG CGA  
  R: ACT AGG CAT CAT CTT GCC GCT TCT  

MBD3 F: GAA GAA GTT TCG CAG CAA GCC ACA  
  R: CAT CTT TCC CGT GCG GAA ATC GAA  

MBD4 F: AGC TAA ACC TCA GGA CAC GAA GCA  
  R: TTG GAC AGGCTG TTG CTA TCT GGA  

MeCP2 F: GCA GCA GCA TCA GAA GGT GTT CAA  
  R: TGC TTG GAA AGG CAT CTT GAC GAG  

18S F: GAA CCA GAG CGA AAG CAT TTG CCA  
    R: ATG GTC GGA ACT ACG ACG GTA TCT  

*F denotes forward primer, R denotes reverse primer. 
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Results 

General characteristics   

The body weights of ZDF rats were significantly greater than their lean counterparts 

at 12 wk, whereas there was no significant difference in total body weight between groups at 

21 wk (Table 2 ).  For the 21 wk experimental group, it was noted that lean controls gained 

weight for the duration of the study, but the weight gain of ZDF rats plateaued or declined 

beginning around 16 wk of age (Appendix B ), despite markedly increased food intake by 

ZDF rats observed at both 12 and 21 wks and throughout the experimental period.  All ZDF 

rats were hyperglycemic, indicating that the animals were indeed diabetic at both 12 and 21 

wk.  There was a trend toward hyperinsulinemia in fasted ZDF rats at 12 wks of age, as 

would be expected in the early stages of type 2 diabetes with insulin resistance.  The 

characteristics of the ZDF rat in the advanced diabetic stage were consistent with those 

reported by others (21). 

 

Perturbed methyl group metabolism in the ZDF rat   

Diabetes produced tissue- and time-specific changes in the expression and activity 

of GNMT and PEMT.  GNMT activity and protein abundance were elevated in the liver of 

ZDF rats compared to lean controls at both 12 and 21 wk of age (Figures 2 and  3).  GNMT 

mRNA abundance also tended towards an increase in the liver at 21 wks (Table 3 ).  Renal 

GNMT activity was increased only at 21 wk (p = 0.012) without parallel increases in renal 

GNMT protein abundance, suggesting possible post-translational regulation of GNMT 

activity in the kidney.  Unexpectedly, hepatic PEMT activity was unchanged in the diabetic 

rat at 12 wk and there was a trend towards decreased activity at 21 wk (lean vs. ZDF: 88 ± 

10 vs. 62 ± 8 pmol/min х mg protein, p = 0.071).  However, there was a trend towards 

increased hepatic PEMT mRNA abundance at 12 wk and a significant increase of 73% in 

PEMT mRNA abundance in ZDF rat liver at 21 wk (Table 3). 

Removal of homocysteine via folate/B12-dependent and independent remethylation 

or transsulfuration pathways was altered in the ZDF rat.  BHMT mRNA abundance was 

increased in ZDF rat liver at 21 wk.  CBS did not show any changes in mRNA abundance, 

but there was a tissue-specific effect on protein abundance (Figure 3 ).  Similar to  
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Figure 2.  Increased hepatic and renal activity of GNMT in ZDF rat.  Values are mean ± 

SEM (n= 6).  *Different from control at a given timepoint, P < 0.05. 

 

observations from the STZ-diabetic rat (7), CBS protein abundance was greater in the liver, 

with a trend towards decreased CBP abundance in the kidney when ZDF rats were 

compared to lean controls at 12 wk.  At 21 wk, there were no significant differences in CBS 

protein levels between ZDF and lean rats in neither the early nor advanced diabetic 

conditions.  In the early diabetic condition, there were slight trends towards increased MS 

activity and mRNA abundance in the liver (lean vs. ZDF, 416 ± 40 vs. 498 ± 21 pmol/(min • 

mg protein), p = 0.098, Table 3).  No changes were observed in renal MS activity. With the 

exception of a trend towards increased MS activity in the heart at 21 wk (lean vs. ZDF, 286 ± 

20 vs. 343 ± 22 pmol/(min • mg protein), p = 0.082), there were no significant changes in the 

heart.  In both the early and advanced diabetic conditions, cardiac CBS and GNMT protein     



www.manaraa.com

 

Figure 3.  Tissue-specific alterations of GNMT and CBS protein abundance

Representative blots are shown.  Values are mean ± SEM, (n=5

P < 0.05.   

 

abundance were similar and no appreciable GNMT activity was detected.

Regulation of the enzymes of methyl group and homocysteine metabolism and 

concentrations of key intermediates of t

and intracellular concentrations of homocysteine, glutathione, SAM, and SAH were also 

perturbed by a diabetic condition.  There was an identical 37% increase in hepatic SAM 

concentrations and in the SAM:SAH ratio in ZDF rat liver relativ

although it must be noted that the increase in the SAM:SAH ratio did not achieve statistical 

significance (Table 4).  Renal SAM concentrations were elevated in both the acute and 

advanced diabetic conditions

These perturbations likely both contributed to the increased SAM:SAH ratio in the kidney at 

both 12 and 21 wk.   

  Plasma total homocysteine concentrations were decreased 67 and 54% at 12 and 

21 wk respectively (Table 5 ).  There were no changes in hepatic concentrations of
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Table 5 .  Fasted plasma and tissue concentrations of total homocysteine and glutathione. 

                

Total homocysteine  Total glutathione 

(µmol/L plasma or g tissue) ( µmol/L plasma or g tissue) 
                

  
Time 
(wk) 

Lean ZDF p-value Lean ZDF p-value 

     
  

  
Plasma 12 6.8 ± 0.3 2.2 ± 0.1* <0.001 21.0 ± 1.2 19.6 ± 0. 7 0.319 

 
21 3.6 ± 0.3 1.6 ± 0.1* <0.001 13.6 ± 0.8 11.3 ± 1. 0 0.115 

 
    

Liver 12 155 ± 22 166 ± 10 0.664 5614 ± 261 7582 ± 413* 0 .002 

 
21 168 ± 7 203 ± 20 0.240 7088 ± 263 7144 ± 235 0.876 

 
    

Kidney 12 11.0 ± 4.1 4.1 ± 0.7* 0.030 41.8 ± 5.8 102.2 ± 4 .1* <0.001 

 
21 6.3 ± 0.9 3.2 ± 1.1 0.059 38.4 ± 10.3 65.4 ± 7.6  0.082 

                

Data are means ± SEM, *indicates significantly different from the control via t-test or rank sum test.  
 

homocysteine, whereas homocysteine concentrations were decreased 63% in the ZDF 

kidney at 12 wk.  Most interestingly, there were significant increases in both hepatic and 

renal total glutathione concentrations at 12 wk.  Renal glutathione levels were also elevated 

in ZDF rats at 21 wk, although this was only observed as a trend. 

 

DNA hypermethylation and upregulation of DNMT1 in the diabetic rat liver 

 In contrast to the development of hepatic global DNA hypomethylation in the 

advanced STZ-diabetic rat (7), marked global DNA hypermethylation was characteristic of 

ZDF rat liver in both early and advanced diabetes (Figure 4 ).  This effect was specific to 

genomic DNA in the liver; changes were observed in neither global DNA methylation levels 

in kidney and heart nor in CpG island methylation status as measured by the overall 

incorporation of [3H]-dCTP.  Likewise, the mRNA abundance of the DNMTs and MBDs were 

unaltered in early diabetes (Appendix B ); however, DNMT1 mRNA abundance was 

increased 95% in the ZDF rat liver at 21 wk (Table 6 ).  Despite minimal impact on the 

regulation of DNMTs  and MBDs at the mRNA level, dysregulation of global DNA  
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Figure 4.  Hepatic hypermethylation of genomic DNA in ZDF rats at (A) 12 and (B) 21 wk of 

age.  By the method of Pogribny et al (19), incorporation of [3H]-dCTP is inversely related to 

the degree of methylation.  Values are mean ± SEM (n=6 ).  *Different from control, P < 

0.05.  
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Table 6.  Hepatic mRNA abundance of epigenetic regulatory proteins in lean and ZDF rats 

at 21 wk of age. 

    Mean fold induction     

Target   Lean ZDF   p-value 

DNMT1 
 

1.00 ± 0.29 1.95 ± 0.37* 
 

0.042 

DNMT3a 
 

1.00 ± 0.27 0.89 ± 0.12 
 

0.353 

DNMT3b 
 

1.00 ± 0.34 0.92 ± 0.20 
 

0.422 

MBD1 
 

1.00 ± 0.40 1.35 ± 0.29 
 

0.241 

MBD2 
 

1.00 ± 0.17 1.02 ± 0.18 
 

0.467 

MBD3  1.00 ± 0.22 1.03 ± 0.14  0.458 

MBD4 
 

1.00 ± 0.58 0.19 ± 0.03 
 

0.197 

MeCP2   1.00 ± 0.47 0.72 ± 0.15   0.275 

Data are means ± SEM (n=6), * indicates significant difference, P < 0.05 
 

methylation patterns appear to be an early event in the pathogenesis of diabetes in the ZDF 

rat.  

 

Discussion 

Here we demonstrate that during the progression of type 2 diabetes in the ZDF rat, 

there are tissue-specific alterations of methyl group and homocysteine metabolism, with 

concurrent epigenetic dysregulation and abnormal concentrations of key intermediates.  

However, unlike the effects of the chronic type 1 diabetic condition in which genomic DNA 

hypomethylation develops in the liver, hepatic genomic DNA was hypermethylated in the 

ZDF rat, even in the early stages of the disease.   

In early diabetes, both ZDF and type 1-diabetic rat models have been shown to 

exhibit similar perturbations hepatic methyl group and homocysteine metabolism (4-9) and 

which were also observed in the ZDF rats of this study at 12 wk.  The net effect of these 
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metabolic perturbations in the liver in early diabetes seems to favor the loss of methyl 

groups the catabolism of methionine to cysteine via induction of GNMT and the 

transsulfuration pathway.  This might be the anticipated result based the abundance of 

evidence supporting GNMT as a regulator of the SAM:SAH ratio (22) and the known 

induction of CBS expression and activity by glucocorticoids and SAM (23,24).  The 

upregulation of CBS may be a compensatory mechanism for self protection of the liver and 

kidney against the oxidative stress associated with a diabetic condition; CBS activity has 

been shown to be enhanced under conditions of oxidative stress (25).  However, many 

studies have found depletion of glutathione in diabetic tissues (26), so the significance of 

this finding remains unclear.  

It also might seem intuitive that when SAM levels have normalized - as occurred in 

the liver at 21 wk - that regulation would change to maintain transmethylation potential.  As 

such, the induction of GNMT was not as great as it was at 12 wk, with only a 19% increase 

in activity and an 8% increase in protein abundance.  There was also a significant increase 

in BHMT mRNA abundance that was not observed in the early diabetic condition.  In 

diabetes, increases in BHMT mRNA abundance have previously been associated with 

increased BHMT activity (12), thereby we suggest remethylation by BHMT may be 

increased.  Interestingly, PEMT was upregulated at the mRNA level, whereas PEMT activity 

was decreased.  A decrease in production of homocysteine by PEMT and lesser induction of 

GNMT combined with an increase in BHMT activity might be expected to contribute to the 

hypohomocysteinemia that persisted in the advanced diabetic state despite no change of 

CBS protein abundance when ZDF rats were compared to controls.  

The response of the kidney to a diabetic condition appears to be less stringently 

regulated.  Whereas, enzymes of methyl group and homocysteine metabolism appeared to 

be regulated at a transcriptional and/or translational level with respect to SAM 

concentrations in the liver, there was a lesser impact on the enzymes of the kidney and 

furthermore, renal intracellular concentrations of SAM, SAH, homocysteine, and glutathione 

appeared to reflect those in the liver and the plasma.  Renal SAM concentrations were 

elevated at both 12 and 21 weeks in the liver but GNMT activity only increased in the 

advanced diabetic condition and there were not concurrent increases in GNMT protein 

abundance.  We have demonstrated the tissue specificity of GNMT regulation previously in 

response to retinoids (26) as well as the diabetic condition (7).  Beyond the increase in 
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GNMT activity, there were no observed alternations of enzymes, nor was DNA methylation 

status affected in the kidney.  House et al (28) also found a lack of effect of either glucagon 

treatment or STZ-diabetes, whereas Jacobs et al (8) reported that renal MS and MTHFR 

activities were suppressed by a type 1 diabetic condition.  

The liver is unique in that it contains the full complement of pathways.  The kidney 

also contains all pathways, although BHMT is expressed at low levels in the rat kidney (30) 

and MS activity was found not to be quantitatively significant (28,31), making 

transsulfuration the primary route for removal of homocysteine in the kidney.  Homocysteine 

levels in the ZDF liver were not different from controls at 12 or 21 wks, despite decreased 

homocysteine concentrations in both the plasma and kidney.  The low levels of 

homocysteine in the kidney are unlikely to be due to increased urinary excretion because 

this was not shown to be a significant method of homocysteine removal in healthy or STZ-

diabetic kidneys (8,31).  The kidney has been shown to contribute significantly to the 

removal of homocysteine and SAH from the circulation (32) and data suggests it contains 

adequate CBS to compensate for acute or chronic increases in plasma homocysteine (28).  

Taken together, it could be ascertained that the continued observance of 

hypohomocysteinemia in rat models might be due to an irreversible loss of homocysteine via 

the transsulfuration pathway, whereas in human patients homocysteine may also be 

remethylated to methionine by BHMT in the kidney, thereby conserving the homocysteine 

moiety and contributing to the development of hyperhomocysteinemia. 

The observation of global DNA hypermethylation in the livers of ZDF rats is 

particularly intriguing.  DNA methylation is an important modulator of chromatin structure, 

repressor of transposable elements, and regulator of gene expression (33,34).  DNA is 

methylated at cytosine residues within the context of CpG dinucleotides.  The CpG 

sequence is underrepresented as only 1-4% of the genome.  This is proposed to be due to 

selection against the sequence due to its high potential for deleterious effects (35).  

Increasing amounts of 5-methylcytosine increases the chance of point mutations through the 

genome by virtue of the spontaneous deamination (36).  Whereas an unmethylated cytosine 

base is deaminated to uracil, deamination of methylated cytosine produces thymine.  If 

these altered bases go undetected by DNA repair enzymes prior to replication and the 

transition mutation will be maintained and carried on to daughter cells.  Accumulation of 

mutations can contribute to genome instability.  Another possible explanation for adverse 
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effects of genomic hypermethylation might involve hypercondensation of the chromosome.  

Experimental overexpression of DNMT1 was used to induce genomic DNA hypermethylation 

and was associated with chromosomal overcondensation, as well as some cases of 

chromosomal rearrangement and misalignment of sister chromatids (37), which could be 

expected to alter chromosomal segregation during cell division.  Genomic hypermethylation 

was also associated with increased methylation at histone 3 lysine 9 (H3K9) (37).  

Interestingly, increased H3K9 dimethylation has also recently been shown in lymphocytes 

from type 1 diabetic patients and was associated with the promoter regions of many genes 

of inflammatory processes which may contribute to the development of secondary 

complications (38).  Moreover, one of the few reports of genomic DNA hypermethylation in 

clinical studies found that leukocytic DNA hypermethylation  was associated with increased 

inflammation (as measured by plasma interleukin-6 concentrations)  and increased mortality 

in patients with chronic kidney disease (39). 

In this study, digestion of DNA by restriction enzymes followed by radiolabeled 

cytosine incorporation provided an assessment of total DNA methylation at the consensus 

sites for HpaII or BssHII, which represent genomic DNA and CpG island sites respectively.  

Genomic hypermethylation in this study could lead to genic or chromosomal mutations that 

would not be detected by the method used in this study.  Likewise, differential patterns of 

methylation in which the overall level of DNA methylation was unchanged would not have 

been detected.  Subsequent studies will be designed to assess DNA methylation in a more 

site-specific manner. 

The pathophysiology of ZDF rats is characterized by obesity, hyperglycemia, 

hyperinsulinemia, hyperlipidemia, and hypertension (40).  ZDF rats develop 

hyperinsulinemia and insulin resistance before 7 wks of age, with an incremental initial drop 

in elevated insulin levels around 8 wks of age, blood glucose levels rise and the animals 

become overtly diabetic by 12 wk of age (41), which we describe here as the early diabetic 

state.  Although insulin levels continue to drop due to the phenomena of pancreatic β-cell 

exhaustion, ZDF rats may remain hyperinsulinemic relative to lean controls well into the 

advanced diabetic stage (21), as was also observed in this study.   In contrast, as a type 1 

models of diabetes, STZ- or alloxan-induced diabetes results in hyperglycemia, but a lack of 

insulin production due to selective destruction of the pancreatic beta cells.  Treatment of rats 

or hepatic cell lines with glucocorticoids, such as dexamethasone or triamcinolone, has also 
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been shown to induce expression of MAT, GNMT, BHMT, and CBS at the transcriptional 

level (4,11,12,42,43).  Insulin administration has been shown to prevent these alterations in 

both rats and/or cell lines.  Interestingly, in healthy individuals insulin stimulates 

transmethylation, as well as transsulfuration flux (44).  Insulin treatment of untreated HepG2 

hepatocarcinoma cells was also capable of inducing MAT activity (45).  Thus insulin could 

be seen as playing a role in elevation of SAM concentrations and the metabolic 

perturbations in the early diabetic state.  Separate treatment of HepG2 cells with glucose 

also resulted in stimulation of MAT activity and furthermore, induced genomic 

hypermethylation (45).  Several recent cell culture studies that were designed to mimic 

hyperglycemia have shown alteration of histone modification which persist after glucose 

levels are restored to normal.  Based on genome-wide profiling of specific histone 

modifications, these studies implicate hyperglycemia in the epigenetic regulation of 

pathways involved in signal transduction, oxidative stress, immune function, and 

inflammation (38,46-49).  The bulk of evidence indicates that aberrations of methyl group 

metabolism and epigenetic regulation are likely due to the combination of hyperglycemia, a 

lack of insulin/insulin resistance and/or elevated counter-regulatory hormones. Alternatively, 

to explain where the response differs with respect to diabetes classification, we might look to 

c peptide for new insight. In both human patients and animal models, C peptide is increased 

in type 2 diabetes, but markedly decreased in type 1 diabetes (50-53). C peptide has been 

shown to be involved in cell signaling – with many insulinomimetic properties - and 

furthermore, has been implicated in the development of vascular inflammation and 

atherosclerosis in type 2 diabetes (50).  However, the actions of c peptide in type 2 diabetics 

are largely uncharacterized and may provide an opportunity for investigation into the 

differences in the pathology of type 1 and type 2 diabetes.     

In summary, we have shown that methyl group and homocysteine metabolism was 

altered in a tissue-specific manner during the progression of type 2 diabetes in the ZDF rat.  

The response to the diabetic condition and elevated SAM concentrations appears to be 

more tightly regulated in the liver than the kidney.  Although there are many commonalities 

in the regulation of methyl group and homocysteine metabolism in type 1 and type 2 

diabetes, the impact on epigenetic regulation varies between the two conditions.  

Abnormalities of enzymatic regulation and key metabolite concentrations have been 

observed as early as 5 weeks of age (9) and we have shown hepatic DNA hypermethylation 

at 12 weeks of age in ZDF rats.  Data are lacking prior to these timepoints, thus it is unclear 
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when the abnormalities of methyl group metabolism and epigenetic regulation are initiated in 

the ZDF rat.  However, it is clear that perturbations of methyl group metabolism and aberrant 

DNA methylation are an early event in the development of a diabetic condition in the ZDF rat 

with potentially long-lasting effects due to the generally stable nature of epigenetic 

mechanisms of regulation. 
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CHAPTER SIX: Summary and conclusions 

 

General discussion of study results  

Our working hypothesis was that sustained induction of glycine N-methyltransferase 

(GNMT), by either retinoids or a diabetic condition, would lead to a functional methyl 

deficiency, whereby methyl groups would be unavailable for other methyltransferase 

reactions, such as DNA methylation.  We expected that changes in epigenetic regulation, 

i.e. DNA methylation, would be associated with adverse effects, such as hepatotoxicity.  

Aberrant epigenetic regulation also represents a possible mechanistic link to 

hepatocarcinogeneis and the development of the secondary complications of diabetes, 

which will be addressed in future studies.  The three studies presented here studied retinoic 

acid and diabetes as inducers of GNMT activity and abundance.  The induction of GNMT by 

retinoic acid or diabetes was observed at all measured timepoints, although there were not 

consistent changes in DNA methylation status, suggesting an influence of other regulatory 

factors.  Methyl group and homocysteine metabolism, as well as epigenetic mechanisms, 

are intricately tied to health and disease.  This information may help in optimization of health 

or prevention/treatment of disease by laying the foundation for future studies which will 

assess gene-specific changes in epigenetic regulation and determine the impact of 

additional regulatory factors. 

Here we have demonstrated that induction of hepatic GNMT by all-trans-retinoic acid 

(RA) treatment (3x weekly) was sustained for at least 6 months, but was not associated with 

changes in DNA methylation status.  Although DNA methylation status was unaltered, the 

possibility remains that other important transmethylation reactions were compromised. 

However, given the rapid clearance of RA from the plasma and lack of storage in the liver, it 

is possible that daily RA treatment is necessary for alteration of DNA methylation status and 

also suggests the possible influence of other regulatory mechanisms in addition to the 

upregulation of GNMT, which was sustained despite non-daily administration of RA.  

Furthermore, RA treatment had adverse effects on hematopoiesis and plasma glutathione 

levels.  This research contributes to the growing body of knowledge that will be useful in the 

risk-benefit analysis of RA therapies. 
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  In contrast to the response to RA, global DNA methylation status was modulated by 

type 1 and type 2 diabetes, though the effect was not the same in both diabetic conditions.  

Despite largely similar patterns of tissue-specific and time-dependent alterations of methyl 

group and homocysteine metabolism, genomic DNA was hypomethylated in the 

streptozotocin (STZ)-induced type 1 diabetic rat liver, but genomic DNA hypermethylation 

was observed in the livers of Zucker (type 2) diabetic fatty (ZDF) rats.  These reports of 

tissue-specific methyl group and homocysteine metabolism, and particularly the association 

with aberrant DNA methylation status, during the progression of diabetes are novel findings. 

 

Methyl group and homocysteine metabolism in diabete s 

The aberrations of methyl group and homocysteine metabolism in diabetic rats are 

time- and tissue-specific.  Hepatic alterations are an early event in both type 1 and type 2 

diabetes.  In the early diabetic and advanced diabetic condition in the STZ-diabetic rat, we 

have reported increased hepatic GNMT, phosphatidylethanolamine N-methyltransferase 

(PEMT), betaine-homocysteine S-methyltransferase (BHMT), and cystathionine β-synthase 

(CBS) activity and/or abundance, whereas methionine synthase (MS) activity was 

decreased.  The Brosnan group has reported upregulation of enzymes of all four pathways 

of hepatic homocysteine metabolism in the prediabetic ZDF rat (1).  When data from the 

studies presented here are taken together with the data of the Brosnan group, it appears 

that many alterations of methyl group and homocysteine metabolism are present in the early 

diabetic condition, whereas only a few characteristics are more persistent and are also 

observed in the advanced diabetic condition, such as the upregulation of hepatic GNMT and 

BHMT, as well as hypohomocysteinemia.   

Hypohomocysteinemia may result in rat models of diabetes due to the lower 

expression levels of BHMT in the rat liver in comparison to the human liver (2).  It has also 

been shown that methionine synthase and urinary disposal are not major routes for the 

removal of homocysteine in neither the healthy nor STZ-diabetic rat liver (3,4).  However, 

the kidney has been shown to remove 40% of SAH (5) and at least  ~20% of homocysteine 

from the circulation (6), thereby it must be assumed that in the rat kidney homocysteine is 

irreversibly catabolized by the transsulfuration pathway, which has been shown 

experimentally as well (7).  In the human kidney, homocysteine may also be remethylated to 
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methionine by BHMT, thereby conserving the homocysteine backbone and possibly 

contributing to the development of hyperhomocysteinemia, particularly in the case of 

diabetic nephropathy in which transsulfuration flux has been shown to be decreased (8).  

Although hyperhomocysteinemia has not been observed even in the advanced diabetic 

conditions in the diabetic rat models used in these studies, downregulation of CBS has been 

implicated in the development of renal dysfunction in the Dahl salt-sensitive hypertensive rat 

(9) and both STZ-diabetic and ZDF rats at least had trends towards decreased CBS 

abundance in the kidney.  It is of interest to note that renal homocysteine levels were 

significantly decreased at 12 wk in the ZDF rats, whereas there was no significant difference 

in advanced diabetes.  Given that signs of renal dysfunction are evidence as early as 14 

weeks of age in the ZDF rat (Anderson and Rowling, unpublished observations), this might 

suggest altered renal handling of homocysteine with the progression of renal disease in this 

model.  

By looking more closely at the data from the ZDF study, we are given greater insight 

into the roles of the liver and kidney in the early and advanced diabetic conditions (Figure 

1).  The enzymes of the liver appear to be tightly regulated as evidenced by increased 

GNMT and CBS activity and/or abundance associated with increased intracellular SAM 

concentration in the early diabetic condition.  When hepatic SAM concentrations are similar 

to controls in the advanced diabetic condition, several methyltransferases are still 

upregulated at the level of mRNA abundance or protein activity and abundance, but CBS 

abundance is not different from controls and BHMT mRNA abundance was increased, likely 

indicating a conservation of methionine.  In contrast, the enzymes of methyl group and 

homocysteine metabolism in the kidney are affected to a lesser extent and metabolite 

concentrations seem to generally reflect changes in liver and circulation.  The only alteration 

at the transcriptional/translational level noted in the kidney was a trend towards decreased 

CBS protein abundance in early diabetes. The increase in GNMT activity at 21 weeks was 

not accompanied by increased GNMT protein abundance, suggesting regulation only at the 

post-translational level.  In the STZ-diabetic rat kidney there was only a transient induction in 

renal GNMT and CBS protein abundance was decreased.  In both the type 1 and type 2 

diabetic rat liver, the tissue-specific perturbations of methyl group and homocysteine 

metabolism preceded or were concurrent with tissue-specific changes in DNA methylation 

status, with abnormal levels of DNA methylation found in the liver, but not the kidney. 
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Figure 1 .  Effects of early (12 wk) and advanced (21 wk) diabetes in the ZDF rat on key 

regulatory proteins and metabolites of methyl group and homocysteine metabolism  

 

Epigenetic regulation in the diabetic state 

For the analysis of epigenetic regulation presented within this work, DNA methylation 

status was assessed by digestion of DNA with methylation-specific restriction enzymes, 

followed by cytosine extension.  Expression of epigenetic regulatory proteins was estimated 

by using real-time reverse-transcriptase PCR for determination of relative mRNA abundance 

of the DNMTs and MBDs.  The DNA methylation assay was first published by Pogribny et al 

(10) and the first published use of the assay by our lab is presented in Chapter 4.  This 

assay was chosen because it was been shown to be sensitive, gives a linear response, and 

is not affected by DNA damage (though it may be noted that damage was not noted in our 

isolated DNA when run out on an agarose gel).  In the initial workup of the assay the linear 

response was verified and we have taken care to include appropriate controls as well.  
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Digestion of DNA by MspI is not methylation-specific and cleaves at all methylated sites, 

whereas 3T3 fully-methylated DNA was used as a negative control.  Use of these controls 

verified that the percent methylation for control samples fell within the expected range of 70-

90% (11).  Use of this method was appropriate for an initial study of DNA methylation status, 

though it is limited in that it only assesses overall methylation status.  We cannot rule out 

that there may be gene-specific changes in methylation status that are undetected by this 

assay or that there are changes in methylation patterns, without changing the overall level of 

CpG island methylation.  We anticipate that gene-specific assessment will be the goal of 

future studies. 

Some of the most intriguing findings of these studies were the detection of hypo- and 

hypermethylation of genomic DNA in the type 1 and type 2 diabetic rat liver respectively.  

Our lab group has found hepatic genomic DNA hypomethylation in type 1 diabetes is 

observed not just in the STZ-diabetic rat, but also in the genetic nonobese diabetic mouse 

model (12).  Alterations of genomic DNA methylation status have been associated with 

increased genomic instability.  Genomic DNA hypomethylation is associated with genomic 

instability due to a more relaxed chromatin structure and fewer repressive mechanisms 

which facilitates a greater number of recombinational events, movement of transposable 

elements, loss of imprinting, and overexpression of genes, specifically oncogenes (13).  

Thus, genomic hypomethylation is a hallmark of cancerous tissue, including hepatocellular 

carcinomas in rat models and in human patients (13-16).  Epidemiological studies support a 

link between diabetes and cancer as evidenced by an increased incidence of liver cancers 

of both type 1 and/or type 2 diabetic patients (17-20). 

On the opposite end of the spectrum, genomic hypermethylation could increase 

genomic instability by altering chromatin and overall chromosomal structure, as well as by 

the accumulation of point mutations.  Increasing amounts of methylated cytosine increases 

the chance of point mutations throughout the genome due to spontaneous deamination (21).  

Unmethylated cytosine bases are deaminated to uracil, whereas deamination of methylated 

cytosine produces thymine, a transition mutation.  If this TpG-CpG mismatch goes 

undetected by DNA repair enzymes prior to replication, the transition mutation will be 

maintained in future cells.  Another possible explanation for adverse effects of genomic 

hypermethylation come from experimental overexpression of DNMT1 which induced 

genomic DNA hypermethylation and was associated with chromosomal overcondensation, 
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as well as some cases of chromosomal rearrangement and misalignment of sister 

chromatids (22), which could be expected to alter chromosomal segregation during cell 

division.  Genomic hypermethylation was also associated with increased methylation at 

histone 3 lysine 9 (H3K9) (22).  Interestingly, increased H3K9 dimethylation has also 

recently been shown in lymphocytes from type 1 diabetic patients and was associated with 

the promoter regions of many genes of inflammatory processes which may contribute to the 

development of secondary complications (23).  Moreover, one of the few reports of genomic 

DNA hypermethylation in clinical studies found that leukocytic global DNA hypermethylation  

was associated with increased inflammation (as measured by plasma interleukin-6 

concentrations)  and increased mortality in patients with chronic kidney disease (24).  Thus, 

both hyper- and hypomethylation of genomic DNA have been associated with adverse 

clinical outcomes which may be relevant to the diabetic condition.   

 

Possible factors regulating metabolic and epigeneti c aberrations in diabetes  

Given the relationship between homocysteine metabolism and epigenetic patterns 

with the pathogenesis of disease, it is critical to determine which factors might play a role in 

regulating these processes.  In the RA-treated rat, it is likely that RA complexed with its 

receptors acts directly on the GNMT promoter to increase transcription.  However, in the 

diabetic condition, there are numerous potential hormonal influences including 

glucocorticoid, insulin, incretin hormones and other insulin-related hormones such as c 

peptide and insulin-like growth factor 1 (IGF-1) which may play a role.  Although diabetes 

perturbations of methyl group and homocysteine metabolism were concurrent with or 

preceded aberrant DNA methylation levels, when taken together the data from the chronic 

RA treatment study, it appears that there are also other influencing factors in each of these 

conditions that contribute to dysregulation of DNA methylation. 

A diabetic condition could be described, in part, as hyperglycemia due to a lack of 

insulin or lack of response to insulin, resulting in a relatively greater effect of glucocorticoids.  

Similar to the effects of a diabetic condition, treatment of rats or hepatic cell lines with 

glucocorticoids, such as dexamethasone or triamcinolone, has been shown to increase 

MAT, GNMT, BHMT, and CBS mRNA abundance, protein abundance, and/or activity levels 

(25-29).  Insulin administration attenuated these effects in both rats and/or cell lines which 
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were diabetic or treated with glucocorticoids.  However, insulin treatment of HepG2, human 

hepatocarcinoma cells, cultured in otherwise standard media was also capable of inducing 

MAT activity (30).  Furthermore, in healthy individuals insulin stimulates transmethylation, as 

well as transsulfuration flux (31).  In the short term, this might be expected to protect against 

the accumulation of homocysteine as proposed by the authors, but if hyperinsulinemia 

persists, these changes might be described as an early event in prediabetes or a diabetic 

condition, similar to that observed by the Brosnan group and in our studies of the ZDF rat.  

However, based on treatment of HepG2 cells, hyperinsulinemia alone was insufficient to 

induce alterations of DNA methylation status (30).  However, glucose treatment increased 

MAT activity and induced genomic DNA hypermethylation.  This suggests a critical role for 

insulin and/or hyperglycemia in the dysregulation of hepatic methyl group and homocysteine 

metabolism and it is possible that the period of hyperinsulinemia in the prediabetic state of 

type 2 diabetes may have a unique influence on metabolic and epigenetic perturbations, 

though no immediate direct effects on DNA methylation status have yet been observed.  

This might be further investigated in cell culture by combining hyperinsulinemic and 

hyperglycemic treatments and determining the impact of concurrent treatment vs. initial 

treatment with insulin followed by co-treatment to look for additive or synergistic effects.  

Alternatively, treating healthy rats with insulin could be used to determine the in vivo effects 

on methyl group metabolism and epigenetic regulation. 

There are a wide variety of additional factors that are influential in the diabetic 

conditions including hormonal factors such as glucagon-like peptide-1 (GLP-1), glucose-

dependent insulinotropic polypeptide (GIP), insulin-like growth factor-1 (IGF-1) and c 

peptide.  Additionally, many of these parameters are affected by common pharmaceutical 

and lifestyle interventions for the treatment of diabetes.  GLP-1 and GIP are also known as 

the incretin hormones and both hormones act directly on the pancreas to increase 

pancreatic beta cell proliferation, insulin synthesis and secretion via direct effects (32).  

GLP-1 also enhances glucose uptake and storage through effects on the central nervous 

system.  Likewise, IGF-1 has insulin-sensitizing effects, acts directly on the pancreatic beta 

cells, and additionally, has insulinomimetic effects (33,34).   Treatment with IGF-1, agents 

which decrease the incretin hormones, or agonists of incretin receptors are the focus of 

many anti-diabetic therapies, which are often successful in slowing the progressing of type 2 

diabetes and minimizing complications (32-35).  However, these medications do not work 

indefinitely and do not abrogate all metabolic perturbations of type 2 diabetes (35).  Studies 
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of insulin-sensitizing interventions in the ZDF rat show a similar pattern.  An exercise 

intervention consisting of 8 wk of treadmill running was successful in improving insulin 

sensitivity and preventing increases in blood glucose in the ZDF rat at 14 wk of age (36).  

However, fasting serum insulin levels continued to rise slowly in ZDF rats despite the 

exercise intervention, which might suggest the course of the disease was only delayed.  The 

effect of exercise on methyl group and homocysteine metabolism was not determined in this 

study.  However, in the insulin resistant (not diabetic) Zucker fatty rat, three weeks of 

troglitazone treatment increased hepatic CBS activity which was proposed to have 

contributed to the observed decrease in plasma homocysteine, but the hepatic SAM:SAH 

ratio was decreased relative to untreated Zucker fatty rats (37).  This data from the strain 

from which the ZDF rat was selectively bred suggests that insulin-sensitizing drugs may 

modulate methyl group and homocysteine metabolism in the prediabetic condition, though 

this limited evidence does not fully explain what effect these alterations may have on 

transmethylation reactions.  Troglitazone works as an activator of PPARα and γ, suggesting 

the possible involvement of yet another regulatory pathway.  Whereas the factors discussed 

thus far affect beta cell function and insulin action specifically, another possibility lies in c 

peptide which, like insulin, is differentially regulated in type 1 and 2 diabetic conditions and 

also has independent cellular signaling mechanisms (38).  

 

Future research   

There are several areas towards which future research efforts could be directed.  

Here are four potential aims: i) perform a more in-depth study of perturbed epigenetic 

regulation in type 1 and type 2 diabetes, ii) investigate possible factors involved in the 

different epigenetic response in advanced type 1 and type 2 diabetic conditions, iii) define 

the mechanisms by which modulators of methyl group and homocysteine exert their effects, 

and iv) develop dietary therapies for optimal health, prevention of disease, or treatment of 

adverse effects. 

 The results from the studies presented herein indicate the presence of diabetes-

induced alterations of DNA methylation status.  Thus far we have shown this as overall net 

changes in DNA methylation, but to gain a greater understanding of the biological 

significance of said aberrations will require localization of the sites at which methylation 
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status is changed.  This information will be crucial for linking alterations of methyl group 

metabolism and epigenetic regulation to the development of secondary complications of 

diabetes, which was not addressed by the current studies.  To accomplish this, experiments 

should be designed to assess both specific changes in epigenetic regulation as well as the 

progression of secondary complications of diabetes.   

For the determination of specific alterations of epigenetic regulation by DNA 

methylation the most comprehensive approach would use of genome-wide analyses such as 

the Methyl-Seq technique, which utilizes next-generation sequencing tools, or DNA 

methylation-specific microarray.  Each technique offers advantages: Methyl-Seq offers a 

nonbiased analysis and will analyze changes in DNA methylation at both genic and 

nongenic sites (39), whereas microarrays are also available for the entire genome (40) or 

specifically covering all known promoter sites for genes and miRNAs, as well as all CpG 

islands (41), which may help to focus in on the most biologically-relevant changes.  For the 

study of individual genes, bisulfite treatment and methylation-specific PCR techniques could 

be used.  Based on recent genome-wide analyses of histone modifications in cultured and 

primary cells from diabetics which revealed widespread and gene-specific alterations of 

histones (23,42-45), as well as our data which demonstrated changes in overall DNA 

methylation levels, we anticipate that we will likewise find changes in DNA status at specific 

sites within the genome.  Alterations of DNA methylation status are expected in pathways 

involved in signal transduction, oxidative stress, immune function, and inflammation.  

Notably, we detected a transient change in methylation status in the CpG islands in the 

STZ-diabetic rat; it is possible that a similar transition occurred in the ZDF rat, but was not 

captured by our study based on the timepoints at which we collected our samples.   

The development of secondary complications and their relationship to epigenetic 

alterations observed in diabetic conditions will require more thorough assessments of kidney 

and vascular function.  Our studies used basic assessments of renal dysfunction by 

comparing relative renal weights and plasma creatinine concentrations.  Although these 

methods are have been used by others in diabetic rats (46,47), renal dysfunction might be 

more adequately assessed in future studies by histological examination and measurement 

of additional circulatory and urinary substances such as has been performed previously in 

diabetic rat models (47).  Plasma and urinary levels of hemoglobin, albumin, and creatinine, 

as well as plasma cystatin c would all be appropriate biochemical measures (46-48).   
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Plasma cystatin c is a more recently established biomarker of renal dysfunction that has the 

additional advantage of not being affected by muscle mass or malignancy and would be 

expected to be appropriate for use in a diabetic population (49,50).  Histochemistry and 

immunohistochemistry methods utilizing hematoxylin and eosin y staining, alone or in 

combination with antibodies against transforming growth factor-β, could be utilized for the 

assessment of alterations of glomerular structure and detection of renal fibrosis.  For future 

studies of cardiovascular disease, we have proposed to assess the progression of 

atherosclerosis as indicated by the vascular response to vasodilators (51), time to 

thrombosis following injury (52), and platelet coactivation activity (53).  In similar studies of 

ZDF rats, early indicators of vascular and renal dysfunction are noted around 14-16 weeks 

of age (54, Anderson and Rowling, unpublished observations) and at necropsy we noted 

gross morphological abnormalities in the kidneys of ZDF rats in the advanced diabetic state. 

The second and third aims relate to increasing understanding of the specific factors 

that are known to alter methyl group metabolism and epigenetic regulation.  The divergent 

regulation of DNA methylation status by type 1 and type 2 diabetic conditions is an intriguing 

finding and efforts should be made to determine possible mediators of this effect.   As has 

been previously discussed, one possibility lies in the timing of insulin exposure based on 

evidence that insulin attenuates abnormal methyl group and homocysteine metabolism in 

type 1 diabetic models and patients (8,27,28,55, Nieman and Schalinske, unpublished 

observations), whereas hyperinsulinemia in healthy individuals and otherwise untreated cell 

culture models was associated with increased transmethylation and transsulfuration (30,31).  

At the surface, it appears that the effect of c peptide might also be a promising target of 

investigation because it is differentially expressed in type 1 and type 2 diabetes, has some 

insulin-like effects, but is also biologically active by a separate receptor, and its functions are 

likely not yet fully characterized (38).  We, and others, have shown that many other 

hormones or biologically active compounds have a profound impact on methyl group and 

homocysteine metabolism (56).  Studies addressing the mechanisms by which these 

compounds - largely ligands for nuclear receptors such as thyroid hormones, retinoids, 

glucocorticoids – exert their regulatory effects may help provide for the development of a 

more unified theory of regulation of methyl group and homocysteine metabolism.   

 Lastly, it would be desirable to be able to formulate some form of dietary therapy to 

ameliorate the effects of perturbed methyl group metabolism.  Methyl group 
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supplementation might be used in type 1 diabetes with the goal of providing adequate levels 

of methyl groups for all SAM-dependent transmethylation reactions.  When considering 

supplementation of methyl groups there are many combinations of donors and cofactors that 

could be provided; however, the most efficient approach would be to use an inclusive 

mixture that has been shown to be optimally effective in previous studies (57).  Thus, 

supplementation groups might receive a modification of our standard semi-purified AIN93 

diet containing (per kg diet): methionine, 3g; choline, 5 g; betaine, 5 g; folate, 5 mg; B12, 0.5 

mg; and B6, 10 mg (57,58).  A number of studies have also shown that SAM can be 

provided via the diet and is bioavailable in both rats and humans (59-61).  It is also of 

interest to note that SAM has recently been reported to increase insulin sensitivity (62) and 

this compound is available over-the-counter.  This makes it an attractive option based on 

consumer availability and also lends particular importance to gaining a greater 

understanding of the effects of taking such a supplement since many individuals may 

already be using this product.  

Another possibility for dietary intervention might be through altering methionine and 

cysteine content.  We have previously shown that methionine supplementation or feeding of 

egg white protein (a protein with a higher methionine:cysteine ratio than the casein 

standard) can alter methyl group and homocysteine metabolism (63,64).   Feeding excess 

methionine (10% casein plus 0.3% vs. 0.5-2.0% methionine) results in a dose-dependent 

increase in hepatic GNMT (63) and it has long been known that excess methionine and 

SAM stimulates transsulfuration (65).  When egg white protein was substituted for casein, 

hepatic GNMT and BHMT activities were increased and plasma homocysteine was 

decreased (64).  Given this upregulation of specific transmethylation reactions and 

transsulfuration in response to increased methionine or methionine:cysteine ratio, it stands 

to reason that feeding diets with a protein with a low methionine:cysteine ratio or by 

supplementing cysteine, the drive towards increased transmethylation and transsulfuration 

might be reduced.  A recent study shows promise for this approach given that 8 wks of L-

cysteine supplementation lowered blood glucose levels and inflammatory markers in ZDF 

rats relative to saline-treated controls (66).  Plasma glutathione levels were unchanged 

between groups, but we have not shown this to be altered in the ZDF rat and data was not 

collected on any other key regulatory proteins of metabolites of methyl group or 

homocysteine metabolism.  This hypothesis certainly warrants future investigation. 
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In addition to the differences in methyl group utilization, specifically with regards to 

DNA methylation, between the type 1 and type 2 conditions, challenges to implementation of 

dietary therapies include timing effects and confounding factors such as dietary intake and 

enzyme polymorphisms.  The timing of dietary intervention has been shown to be 

particularly important, especially with regards to influencing epigenetic mechanisms.  DNA 

methylation and other forms of epigenetic regulation seem to be particularly vulnerable to 

change during the perinatal and pubertal periods and in aging (67,68).  Likewise, it appears 

that in the progression of disease, it is likely that there is only a specific window of time in 

which the effects may be prevented or reversed, as has been shown in the methyl-deficient 

diet model of hepatocarcinogenesis (69).  Furthermore, in human populations, the response 

of homocysteine and folate one-carbon metabolism to dietary interventions has been shown 

to be affected by polymorphisms within these pathways (70-72) 

 

Overall conclusions 

 In summary, these studies have demonstrated the changes of methyl group and 

homocysteine metabolism in long-term intermittent retinoid treatment, as well as during the 

progression of type 1 and type 2 diabetic conditions.  Furthermore, we have characterized 

perturbations of overall epigenetic regulation by DNA methylation in a diabetic condition.  In 

the diabetic conditions, alterations in methyl group and homocysteine metabolism preceded 

or were concurrent with changes in epigenetic regulation.  Although GNMT was upregulated 

by retinoid treatment and in both diabetic conditions, the effects on DNA methylation status 

varied.  This disparity suggests a role for additional factors impacting epigenetic regulation.  

Future studies should be conducted with the goal of elucidating which factors are most 

important in the modulation of methyl group and homocysteine metabolism, as well as 

regulation of DNA methylation patterns.  It will also be of the utmost interest to determine the 

specific nature of the epigenetic alterations observed here and greater efforts must be made 

to identify potential linkages between these changes and the development of diabetic 

complications, thus providing insight into the biological significance of abnormal methylation 

in diabetes and potentially providing targets for future therapies. 
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APPENDIX A. Chapter 4 Supplemental Data 

 

Plasma creatinine was significantly decreased in the STZ-diabetic rat at 8 wk. 

  Plasma creatinine (mg/dL)   

Time (weeks) Control STZ-Diabetic p-value 

2 1.71 ± 0.19 1.60 ± 0.22 0.712 

4 2.08 ± 0.23 1.45 ± 0.19 0.065 

8 2.28 ± 0.30 0.88 ± 0.15* 0.015 

Data are means ± SEM (n = 5). *indicates significantly different from control, p < 0.05. 
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APPENDIX B.  Chapter 5 Supplemental Data 
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Body weights of lean and ZDF rats in the study of advanced diabetes.  Data are means, 
statistical analysis at 21 wk presented in Table 2 within the text.  
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Hepatic mRNA abundance of key proteins of epigenetic regulation was unchanged at 12 wk 
in ZDF rats compared to lean controls 

    Mean fold induction     

Target   Lean ZDF   p-value 

DNMT1  1.00 ± 0.23 0.97 ± 0.33  0.944 

DNMT3a  1.00 ± 0.66 0.20 ± 0.10  0.215 

DNMT3b  1.00 ± 0.44 0.33 ± 0.13  0.150 

MBD1  1.00 ± 0.51 0.60 ± 0.32  0.504 

MBD2  1.00 ± 0.73 0.18 ± 0.06  0.247 

MBD3  1.00 ± 0.68 0.17 ± 0.11  0.213 

MBD4  1.00 ± 0.70 0.11 ± 0.09  0.247 

MeCP2   1.00 ± 0.65 0.15 ± 0.08   0.429 

Data are means ± SEM, * indicates significant difference, P < 0.05 
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